Spaces:
Sleeping
Sleeping
structured repo for huggingface spaces
Browse files- streamlit_app.py → app.py +7 -6
- requirements.dev.txt +3 -0
- requirements.txt +0 -2
- utils.py +30 -2
streamlit_app.py → app.py
RENAMED
@@ -1,7 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
from datetime import time, date
|
4 |
-
from utils import generate_random_data, evaluate_alarm_state, aggregate_data
|
5 |
from textwrap import dedent
|
6 |
from matplotlib import pyplot as plt
|
7 |
|
@@ -20,7 +20,7 @@ def main():
|
|
20 |
|
21 |
if not st.session_state.df.empty:
|
22 |
display_dataframe("Raw Event Data", st.session_state.df)
|
23 |
-
st.
|
24 |
|
25 |
# Section 2 - Calculate Aggregations
|
26 |
st.header("Section 2 - Calculate Aggregations")
|
@@ -34,7 +34,7 @@ def main():
|
|
34 |
key='aggregation_function_input__storage',
|
35 |
help="Select the aggregation function for visualizing the data."
|
36 |
)
|
37 |
-
st.line_chart(st.session_state.aggregated_df.set_index("Timestamp")[
|
38 |
|
39 |
# Section 3 - Summary Data Aggregated by Period
|
40 |
st.header("Section 3 - Summary Data Aggregated by Period")
|
@@ -48,7 +48,7 @@ def main():
|
|
48 |
key='aggregation_function_input__alarm',
|
49 |
help="Select the aggregation function for visualizing the data."
|
50 |
)
|
51 |
-
st.line_chart(st.session_state.summary_by_period_df.set_index("Timestamp")[
|
52 |
|
53 |
# Section 4 - Evaluate Alarm State
|
54 |
st.header("Section 4 - Evaluate Alarm State")
|
@@ -96,8 +96,8 @@ def aggregation_form() -> None:
|
|
96 |
|
97 |
def summary_by_period_form() -> None:
|
98 |
period_length_input = st.selectbox("Period Length", ['1min', '5min', '15min'], key='period_length_input', help="Select the period length for aggregating the summary data.")
|
99 |
-
if not st.session_state.
|
100 |
-
st.session_state.summary_by_period_df =
|
101 |
|
102 |
def alarm_state_form() -> None:
|
103 |
threshold_input = st.slider("Threshold (ms)", min_value=50, max_value=300, value=150, key='threshold_input', help="Specify the threshold value for evaluating the alarm state.")
|
@@ -238,3 +238,4 @@ def display_key_tables() -> None:
|
|
238 |
|
239 |
if __name__ == "__main__":
|
240 |
main()
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
from datetime import time, date
|
4 |
+
from utils import generate_random_data, evaluate_alarm_state, aggregate_data, re_aggregate_data
|
5 |
from textwrap import dedent
|
6 |
from matplotlib import pyplot as plt
|
7 |
|
|
|
20 |
|
21 |
if not st.session_state.df.empty:
|
22 |
display_dataframe("Raw Event Data", st.session_state.df)
|
23 |
+
st.line_chart(st.session_state.df.set_index("Timestamp"))
|
24 |
|
25 |
# Section 2 - Calculate Aggregations
|
26 |
st.header("Section 2 - Calculate Aggregations")
|
|
|
34 |
key='aggregation_function_input__storage',
|
35 |
help="Select the aggregation function for visualizing the data."
|
36 |
)
|
37 |
+
st.line_chart(st.session_state.aggregated_df.set_index("Timestamp")[aggregation_function_input__storage])
|
38 |
|
39 |
# Section 3 - Summary Data Aggregated by Period
|
40 |
st.header("Section 3 - Summary Data Aggregated by Period")
|
|
|
48 |
key='aggregation_function_input__alarm',
|
49 |
help="Select the aggregation function for visualizing the data."
|
50 |
)
|
51 |
+
st.line_chart(st.session_state.summary_by_period_df.set_index("Timestamp")[aggregation_function_input__alarm])
|
52 |
|
53 |
# Section 4 - Evaluate Alarm State
|
54 |
st.header("Section 4 - Evaluate Alarm State")
|
|
|
96 |
|
97 |
def summary_by_period_form() -> None:
|
98 |
period_length_input = st.selectbox("Period Length", ['1min', '5min', '15min'], key='period_length_input', help="Select the period length for aggregating the summary data.")
|
99 |
+
if not st.session_state.aggregated_df.empty:
|
100 |
+
st.session_state.summary_by_period_df = re_aggregate_data(st.session_state.aggregated_df, period_length_input)
|
101 |
|
102 |
def alarm_state_form() -> None:
|
103 |
threshold_input = st.slider("Threshold (ms)", min_value=50, max_value=300, value=150, key='threshold_input', help="Specify the threshold value for evaluating the alarm state.")
|
|
|
238 |
|
239 |
if __name__ == "__main__":
|
240 |
main()
|
241 |
+
|
requirements.dev.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
ipykernel
|
2 |
+
jupyterlab
|
3 |
+
watchdog
|
requirements.txt
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
pandas
|
2 |
numpy
|
3 |
-
ipykernel
|
4 |
-
jupyterlab
|
5 |
streamlit
|
6 |
matplotlib
|
|
|
1 |
pandas
|
2 |
numpy
|
|
|
|
|
3 |
streamlit
|
4 |
matplotlib
|
utils.py
CHANGED
@@ -42,13 +42,14 @@ def calculate_percentile(
|
|
42 |
freq: str,
|
43 |
percentile: float
|
44 |
) -> pd.DataFrame:
|
45 |
-
percentile_df: pd.DataFrame = df.groupby(pd.Grouper(key='Timestamp', freq=freq))["ResponseTime(ms)"]
|
|
|
46 |
percentile_df.replace(to_replace=np.nan, value=None, inplace=True)
|
47 |
return percentile_df
|
48 |
|
49 |
def aggregate_data(
|
50 |
df: pd.DataFrame,
|
51 |
-
period_length: str
|
52 |
) -> pd.DataFrame:
|
53 |
if df.empty:
|
54 |
return pd.DataFrame() # Return an empty DataFrame if input is empty
|
@@ -72,6 +73,33 @@ def aggregate_data(
|
|
72 |
).reset_index()
|
73 |
return summary_df
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def chunk_list(input_list: List[Any], size: int = 3) -> Iterator[List[Any]]:
|
76 |
while input_list:
|
77 |
chunk: List[Any] = input_list[:size]
|
|
|
42 |
freq: str,
|
43 |
percentile: float
|
44 |
) -> pd.DataFrame:
|
45 |
+
percentile_df: pd.DataFrame = df.groupby(pd.Grouper(key='Timestamp', freq=freq))["ResponseTime(ms)"]\
|
46 |
+
.quantile(percentile).reset_index(name=f"p{int(percentile * 100)}_ResponseTime(ms)")
|
47 |
percentile_df.replace(to_replace=np.nan, value=None, inplace=True)
|
48 |
return percentile_df
|
49 |
|
50 |
def aggregate_data(
|
51 |
df: pd.DataFrame,
|
52 |
+
period_length: str,
|
53 |
) -> pd.DataFrame:
|
54 |
if df.empty:
|
55 |
return pd.DataFrame() # Return an empty DataFrame if input is empty
|
|
|
73 |
).reset_index()
|
74 |
return summary_df
|
75 |
|
76 |
+
def re_aggregate_data(
|
77 |
+
df: pd.DataFrame,
|
78 |
+
period_length: str,
|
79 |
+
) -> pd.DataFrame:
|
80 |
+
if df.empty:
|
81 |
+
return pd.DataFrame() # Return an empty DataFrame if input is empty
|
82 |
+
|
83 |
+
aggregation_funcs = {
|
84 |
+
'p50': lambda x: np.percentile(x.dropna(), 50) if not x.dropna().empty else np.nan,
|
85 |
+
'p95': lambda x: np.percentile(x.dropna(), 95) if not x.dropna().empty else np.nan,
|
86 |
+
'p99': lambda x: np.percentile(x.dropna(), 99) if not x.dropna().empty else np.nan,
|
87 |
+
'max': lambda x: np.max(x.dropna()) if not x.dropna().empty else np.nan,
|
88 |
+
'min': lambda x: np.min(x.dropna()) if not x.dropna().empty else np.nan,
|
89 |
+
'average': lambda x: np.mean(x.dropna()) if not x.dropna().empty else np.nan
|
90 |
+
}
|
91 |
+
|
92 |
+
summary_df = df.groupby(pd.Grouper(key='Timestamp', freq=period_length)).agg(
|
93 |
+
p50=('p50', aggregation_funcs['p50']),
|
94 |
+
p95=('p95', aggregation_funcs['p95']),
|
95 |
+
p99=('p99', aggregation_funcs['p99']),
|
96 |
+
max=('max', aggregation_funcs['max']),
|
97 |
+
min=('min', aggregation_funcs['min']),
|
98 |
+
average=('average', aggregation_funcs['average']),
|
99 |
+
).reset_index()
|
100 |
+
return summary_df
|
101 |
+
|
102 |
+
|
103 |
def chunk_list(input_list: List[Any], size: int = 3) -> Iterator[List[Any]]:
|
104 |
while input_list:
|
105 |
chunk: List[Any] = input_list[:size]
|