Spaces:
Configuration error
Configuration error
Commit
·
25f0c96
1
Parent(s):
3f3337a
online trainer
Browse files- .gitignore +138 -0
- app.py +94 -5
- requirements.txt +3 -0
- trainer.py +139 -0
- utils/__init__.py +0 -0
- utils/load_dataset.py +7 -0
- utils/load_models.py +8 -0
- utils/load_tasks.py +15 -0
.gitignore
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
98 |
+
__pypackages__/
|
99 |
+
|
100 |
+
# Celery stuff
|
101 |
+
celerybeat-schedule
|
102 |
+
celerybeat.pid
|
103 |
+
.vscode
|
104 |
+
# SageMath parsed files
|
105 |
+
*.sage.py
|
106 |
+
|
107 |
+
# Environments
|
108 |
+
.env
|
109 |
+
.venv
|
110 |
+
env/
|
111 |
+
venv/
|
112 |
+
ENV/
|
113 |
+
env.bak/
|
114 |
+
venv.bak/
|
115 |
+
|
116 |
+
# Spyder project settings
|
117 |
+
.spyderproject
|
118 |
+
.spyproject
|
119 |
+
|
120 |
+
# Rope project settings
|
121 |
+
.ropeproject
|
122 |
+
|
123 |
+
# mkdocs documentation
|
124 |
+
/site
|
125 |
+
|
126 |
+
# mypy
|
127 |
+
.mypy_cache/
|
128 |
+
.dmypy.json
|
129 |
+
dmypy.json
|
130 |
+
|
131 |
+
# Pyre type checker
|
132 |
+
.pyre/
|
133 |
+
|
134 |
+
# pytype static type analyzer
|
135 |
+
.pytype/
|
136 |
+
|
137 |
+
# Cython debug symbols
|
138 |
+
cython_debug/
|
app.py
CHANGED
@@ -1,7 +1,96 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from utils.load_dataset import load_datasets
|
3 |
+
from utils.load_tasks import load_tasks
|
4 |
+
from utils.load_models import load_models
|
5 |
+
from trainer import train_estimtator
|
6 |
+
from datetime import datetime
|
7 |
+
import logging
|
8 |
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
def main():
|
13 |
+
parameter = st.experimental_get_query_params()
|
14 |
+
parameter["model_name_or_path"] = parameter.get("model_name_or_path", ["none"])
|
15 |
+
parameter["dataset"] = parameter.get("dataset", ["none"])
|
16 |
+
parameter["task"] = parameter.get("task", ["none"])
|
17 |
+
### hyperparameter
|
18 |
+
parameter["epochs"] = parameter.get("epochs", [3])
|
19 |
+
parameter["learning_rate"] = parameter.get("learning_rate", [5e-5])
|
20 |
+
parameter["per_device_train_batch_size"] = parameter.get("per_device_train_batch_size", [8])
|
21 |
+
parameter["per_device_eval_batch_size"] = parameter.get("per_device_eval_batch_size", [8])
|
22 |
+
st.experimental_set_query_params(**parameter)
|
23 |
+
|
24 |
+
dataset_list = load_datasets()
|
25 |
+
task_list = load_tasks()
|
26 |
+
model_list = load_models()
|
27 |
+
|
28 |
+
st.header("Hugging Face model & dataset")
|
29 |
+
col1, col2 = st.beta_columns(2)
|
30 |
+
parameter["model_name_or_path"] = col1.selectbox("Model ID:", parameter["model_name_or_path"] + model_list)
|
31 |
+
st.experimental_set_query_params(**parameter)
|
32 |
+
|
33 |
+
parameter["dataset"] = col2.selectbox("Dataset:", parameter["dataset"] + dataset_list)
|
34 |
+
st.experimental_set_query_params(**parameter)
|
35 |
+
|
36 |
+
parameter["task"] = col1.selectbox("Task:", parameter["task"] + task_list)
|
37 |
+
st.experimental_set_query_params(**parameter)
|
38 |
+
|
39 |
+
use_auth_token = col2.text_input("HF auth token to upload your model:", help="api_xxxxx")
|
40 |
+
|
41 |
+
my_expander = st.beta_expander("Hyperparameters")
|
42 |
+
col1, col2 = my_expander.beta_columns(2)
|
43 |
+
parameter["epochs"] = col1.number_input("Epoch", 3)
|
44 |
+
st.experimental_set_query_params(**parameter)
|
45 |
+
|
46 |
+
parameter["learning_rate"] = col2.text_input("Learning Rate", 5e-5)
|
47 |
+
st.experimental_set_query_params(**parameter)
|
48 |
+
|
49 |
+
parameter["per_device_train_batch_size"] = col1.number_input("Training Batch Size", 8)
|
50 |
+
st.experimental_set_query_params(**parameter)
|
51 |
+
|
52 |
+
parameter["per_device_eval_batch_size"] = col2.number_input("Eval Batch Size", 8)
|
53 |
+
st.experimental_set_query_params(**parameter)
|
54 |
+
st.markdown("---")
|
55 |
+
|
56 |
+
st.header("Amazon Sagemaker configuration")
|
57 |
+
|
58 |
+
config = {}
|
59 |
+
|
60 |
+
config["job_name"] = st.text_input(
|
61 |
+
"model name",
|
62 |
+
f"{parameter['model_name_or_path'][0] if isinstance(parameter['model_name_or_path'],list)else parameter['model_name_or_path']}-job-{str(datetime.today()).split()[0]}",
|
63 |
+
)
|
64 |
+
col1, col2 = st.beta_columns(2)
|
65 |
+
|
66 |
+
config["aws_sagemaker_role"] = col1.text_input("AWS IAM role for sagemaker job")
|
67 |
+
config["instance_type"] = col2.selectbox(
|
68 |
+
"Instance type",
|
69 |
+
[
|
70 |
+
"single-gpu | ml.p3.2xlarge",
|
71 |
+
"multi-gpu | ml.p3.16xlarge",
|
72 |
+
],
|
73 |
+
)
|
74 |
+
config["region"] = col1.selectbox(
|
75 |
+
"AWS Region",
|
76 |
+
["eu-central-1", "eu-west-1", "us-east-1", "us-east-1", "us-west-1", "us-west-2"],
|
77 |
+
)
|
78 |
+
config["instance_count"] = col2.number_input("Instance count", 1)
|
79 |
+
config["use_spot"] = col1.selectbox("use spot instances", [False, True])
|
80 |
+
st.markdown("---")
|
81 |
+
|
82 |
+
st.header("Credentials")
|
83 |
+
# sagemaker config
|
84 |
+
col1, col2 = st.beta_columns(2)
|
85 |
+
config["aws_access_key_id"] = col1.text_input("Aws Secret Key ID")
|
86 |
+
config["aws_secret_accesskey"] = col2.text_input("Aws Secret Access Key")
|
87 |
+
|
88 |
+
if use_auth_token:
|
89 |
+
parameter["use_auth_token"] = use_auth_token
|
90 |
+
|
91 |
+
if st.button("Start training on SageMaker"):
|
92 |
+
train_estimtator(parameter, config)
|
93 |
+
|
94 |
+
|
95 |
+
if __name__ == "__main__":
|
96 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
sagemaker
|
2 |
+
transformers
|
3 |
+
datasets
|
trainer.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sagemaker.huggingface import HuggingFace
|
2 |
+
import logging
|
3 |
+
import sys
|
4 |
+
from contextlib import contextmanager
|
5 |
+
from io import StringIO
|
6 |
+
from streamlit.report_thread import REPORT_CONTEXT_ATTR_NAME
|
7 |
+
from threading import current_thread
|
8 |
+
import streamlit as st
|
9 |
+
import sys
|
10 |
+
import sagemaker
|
11 |
+
import boto3
|
12 |
+
|
13 |
+
|
14 |
+
@contextmanager
|
15 |
+
def st_redirect(src, dst):
|
16 |
+
placeholder = st.empty()
|
17 |
+
output_func = getattr(placeholder, dst)
|
18 |
+
|
19 |
+
with StringIO() as buffer:
|
20 |
+
old_write = src.write
|
21 |
+
|
22 |
+
def new_write(b):
|
23 |
+
if getattr(current_thread(), REPORT_CONTEXT_ATTR_NAME, None):
|
24 |
+
buffer.write(b)
|
25 |
+
output_func(buffer.getvalue())
|
26 |
+
else:
|
27 |
+
old_write(b)
|
28 |
+
|
29 |
+
try:
|
30 |
+
src.write = new_write
|
31 |
+
yield
|
32 |
+
finally:
|
33 |
+
src.write = old_write
|
34 |
+
|
35 |
+
|
36 |
+
@contextmanager
|
37 |
+
def st_stdout(dst):
|
38 |
+
with st_redirect(sys.stdout, dst):
|
39 |
+
yield
|
40 |
+
|
41 |
+
|
42 |
+
@contextmanager
|
43 |
+
def st_stderr(dst):
|
44 |
+
with st_redirect(sys.stderr, dst):
|
45 |
+
yield
|
46 |
+
|
47 |
+
|
48 |
+
task2script = {
|
49 |
+
"text-classification": {
|
50 |
+
"entry_point": "run_glue.py",
|
51 |
+
"source_dir": "examples/text-classification",
|
52 |
+
},
|
53 |
+
"token-classification": {
|
54 |
+
"entry_point": "run_ner.py",
|
55 |
+
"source_dir": "examples/token-classification",
|
56 |
+
},
|
57 |
+
"question-answering": {
|
58 |
+
"entry_point": "run_qa.py",
|
59 |
+
"source_dir": "examples/question-answering",
|
60 |
+
},
|
61 |
+
"summarization": {
|
62 |
+
"entry_point": "run_summarization.py",
|
63 |
+
"source_dir": "examples/seq2seq",
|
64 |
+
},
|
65 |
+
"translation": {
|
66 |
+
"entry_point": "run_translation.py",
|
67 |
+
"source_dir": "examples/seq2seq",
|
68 |
+
},
|
69 |
+
"causal-language-modeling": {
|
70 |
+
"entry_point": "run_clm.py",
|
71 |
+
"source_dir": "examples/language-modeling",
|
72 |
+
},
|
73 |
+
"masked-language-modeling": {
|
74 |
+
"entry_point": "run_mlm.py",
|
75 |
+
"source_dir": "examples/language-modeling",
|
76 |
+
},
|
77 |
+
}
|
78 |
+
|
79 |
+
|
80 |
+
def train_estimtator(parameter, config):
|
81 |
+
with st_stdout("code"):
|
82 |
+
logger = logging.getLogger(__name__)
|
83 |
+
|
84 |
+
logging.basicConfig(
|
85 |
+
level=logging.getLevelName("INFO"),
|
86 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
87 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
88 |
+
)
|
89 |
+
logger.info = print
|
90 |
+
|
91 |
+
# git configuration to download our fine-tuning script
|
92 |
+
git_config = {"repo": "https://github.com/huggingface/transformers.git", "branch": "v4.4.2"}
|
93 |
+
|
94 |
+
# creating fine-tuning script
|
95 |
+
entry_point = task2script[parameter["task"]]["entry_point"]
|
96 |
+
source_dir = task2script[parameter["task"]]["source_dir"]
|
97 |
+
# create train file
|
98 |
+
# iam configuration
|
99 |
+
session = boto3.session.Session(
|
100 |
+
aws_access_key_id=config["aws_access_key_id"],
|
101 |
+
aws_secret_access_key=config["aws_secret_accesskey"],
|
102 |
+
region_name=config["region"],
|
103 |
+
)
|
104 |
+
sess = sagemaker.Session(boto_session=session)
|
105 |
+
|
106 |
+
iam = session.client(
|
107 |
+
"iam", aws_access_key_id=config["aws_access_key_id"], aws_secret_access_key=config["aws_secret_accesskey"]
|
108 |
+
)
|
109 |
+
role = iam.get_role(RoleName=config["aws_sagemaker_role"])["Role"]["Arn"]
|
110 |
+
|
111 |
+
logger.info(f"role: {role}")
|
112 |
+
instance_type = config["instance_type"].split("|")[1].split("|")[0].strip()
|
113 |
+
logger.info(f"instance_type: {instance_type}")
|
114 |
+
|
115 |
+
hyperparameters = {
|
116 |
+
"output_dir": "/opt/ml/model",
|
117 |
+
"do_train": True,
|
118 |
+
"do_eval": True,
|
119 |
+
"do_predict": True,
|
120 |
+
**parameter,
|
121 |
+
}
|
122 |
+
del hyperparameters["task"]
|
123 |
+
# create estimator
|
124 |
+
huggingface_estimator = HuggingFace(
|
125 |
+
entry_point=entry_point,
|
126 |
+
source_dir=source_dir,
|
127 |
+
git_config=git_config,
|
128 |
+
base_job_name=config["job_name"],
|
129 |
+
instance_type=instance_type,
|
130 |
+
sagemaker_session=sess,
|
131 |
+
instance_count=config["instance_count"],
|
132 |
+
role=role,
|
133 |
+
transformers_version="4.4",
|
134 |
+
pytorch_version="1.6",
|
135 |
+
py_version="py36",
|
136 |
+
hyperparameters=hyperparameters,
|
137 |
+
)
|
138 |
+
# train
|
139 |
+
huggingface_estimator.fit()
|
utils/__init__.py
ADDED
File without changes
|
utils/load_dataset.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import datasets as ds
|
3 |
+
|
4 |
+
|
5 |
+
@st.cache
|
6 |
+
def load_datasets():
|
7 |
+
return ds.list_datasets(with_community_datasets=False)
|
utils/load_models.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
|
5 |
+
@st.cache
|
6 |
+
def load_models():
|
7 |
+
res = requests.get("https://huggingface.co/api/models").json()
|
8 |
+
return [model["modelId"] for model in res]
|
utils/load_tasks.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import datasets as ds
|
3 |
+
|
4 |
+
|
5 |
+
@st.cache
|
6 |
+
def load_tasks():
|
7 |
+
return [
|
8 |
+
'causal-language-modeling',
|
9 |
+
'masked-language-modeling',
|
10 |
+
'question-answering',
|
11 |
+
'summarization',
|
12 |
+
'text-classification',
|
13 |
+
'token-classification',
|
14 |
+
'translation',
|
15 |
+
]
|