|
from dotenv import find_dotenv, load_dotenv |
|
load_dotenv(find_dotenv()) |
|
|
|
from langchain_openai import ChatOpenAI |
|
from langchain_openai import OpenAIEmbeddings |
|
|
|
GPT4_MODEL_NAME = "gpt-4-turbo-2024-04-09" |
|
GPT35_MODEL_NAME = "gpt-3.5-turbo-1106" |
|
|
|
gpt35_model = ChatOpenAI(model=GPT35_MODEL_NAME, temperature=0.0) |
|
gpt4_model = ChatOpenAI(model=GPT4_MODEL_NAME, temperature=0.0) |
|
embeddings = OpenAIEmbeddings(model="text-embedding-3-small") |
|
|
|
DEFAULT_QUESTION1 = "What was the total value of 'Cash and cash equivalents' as of December 31, 2023?" |
|
DEFAULT_QUESTION2 = "Who are 'Directors' (i.e., members of the Board of Directors) for Meta?" |
|
|
|
ROOT_PATH = "./meta2023" |
|
VECTOR_STORE_PATH = f"{ROOT_PATH}/data/qdrant" |
|
META_10K_FILE_PATH = f"{ROOT_PATH}/data/meta-10k-2023.pdf" |
|
META_SEMANTIC_COLLECTION = "meta10k-semantic" |
|
|
|
|