philipsltd's picture
first commit of the hugging face demo repo
7374fb2
raw
history blame contribute delete
737 Bytes
import torch
import torchvision
from torch import nn
def create_effnetb2_model(num_classes:int=3,
seed:int=42):
# 1, 2, 3 create effnetb2 pretrained weights transforms and model
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
transforms = weights.transforms()
model = torchvision.models.efficientnet_b2(weights=weights)
# 4. freeze all layers in base model
for param in model.parameters():
param.requires_grad = False
# 5. change classifier head with random seed for reproducibility
torch.manual_seed(seed)
model.classifier = nn.Sequential(
nn.Dropout(p=0.3, inplace=True),
nn.Linear(in_features=1408, out_features=num_classes)
)
return model, transforms