philipp-zettl's picture
Update app.py
3450a70 verified
import gradio as gr
import torch
import spaces
from transformers import pipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = 'HuggingFaceTB/SmolLM-135M-Instruct'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
input_text = tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.92,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()