ChessPT / model.py
philipp-zettl's picture
Create model.py
b999262 verified
raw
history blame
4.25 kB
import torch
import torch.nn as nn
from torch.nn import functional as F
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# one head of self-attention using scaled-dot product attention
class Head(nn.Module):
def __init__(self, n_embed, head_size, context_size, dropout=0.1):
super().__init__()
self.key = nn.Linear(n_embed, head_size, bias=False)
self.query = nn.Linear(n_embed, head_size, bias=False)
self.value = nn.Linear(n_embed, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(context_size, context_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B,T,C = x.shape
k = self.key(x)
q = self.query(x)
v = self.value(x)
tril = torch.tril(torch.ones(T, T, device=device))
wei = q @ k.transpose(-2, -1) * (C**-0.5)
wei = wei.masked_fill(tril == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__(self, n_embed, num_heads, context_size, head_size, dropout):
super().__init__()
self.heads = nn.ModuleList([
Head(n_embed, head_size, context_size)
for _ in range(num_heads)
])
self.projection = nn.Linear(n_embed, n_embed)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.projection(out)
return self.dropout(out)
# simple feed forward layer
class FeedForward(nn.Module):
def __init__(self, n_embeds, dropout):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embeds, 4 * n_embeds),
nn.ReLU(),
# projection layer
nn.Linear(4 * n_embeds, n_embeds),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
# Transformer block
class Block(nn.Module):
def __init__(self, n_embeds, n_head, context_size, dropout):
super().__init__()
head_size = n_embeds // n_head
self.sa = MultiHeadAttention(n_embeds, n_head, context_size, head_size, dropout)
self.ffwd = FeedForward(n_embeds, dropout)
self.ln1 = nn.LayerNorm(n_embeds)
self.ln2 = nn.LayerNorm(n_embeds)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
# simple bigram model
class DecoderTransformer(nn.Module):
def __init__(self, vocab_size, n_embed, context_size, n_layer, n_head, dropout):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_embed)
self.position_embedding_table = nn.Embedding(context_size, n_embed)
self.blocks = nn.Sequential(
*[Block(
n_embeds=n_embed,
n_head=n_head,
context_size=context_size,
dropout=dropout
) for _ in range(n_layer)]
)
self.ln_f = nn.LayerNorm(n_embed)
self.lm_head = nn.Linear(n_embed, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets of size (B,T)
token_embeds = self.token_embedding_table(idx) # yields (B, T, C)
pos_embeds = self.position_embedding_table(torch.arange(T, device=device))
x = token_embeds + pos_embeds
x = self.ln_f(self.blocks(x))
logits = self.lm_head(x)
if targets is None:
return logits, None
# reshape elements
B, T, C = logits.shape
logits = logits.view(B*T,C)
targets = targets.view(B*T)
# compute loss (CE)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens, context_size):
for _ in range(max_new_tokens):
idx_cond = idx[:, -context_size:]
logits, loss = self(idx_cond)
logits = logits[:,-1,:]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat([idx, idx_next], dim=1)
return idx