|
from numpy import zeros, int32, float32
|
|
from torch import from_numpy
|
|
|
|
from .core import maximum_path_jit
|
|
|
|
|
|
def maximum_path(neg_cent, mask):
|
|
""" numba optimized version.
|
|
neg_cent: [b, t_t, t_s]
|
|
mask: [b, t_t, t_s]
|
|
"""
|
|
device = neg_cent.device
|
|
dtype = neg_cent.dtype
|
|
neg_cent = neg_cent.data.cpu().numpy().astype(float32)
|
|
path = zeros(neg_cent.shape, dtype=int32)
|
|
|
|
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(int32)
|
|
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(int32)
|
|
maximum_path_jit(path, neg_cent, t_t_max, t_s_max)
|
|
return from_numpy(path).to(device=device, dtype=dtype)
|
|
|