Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,107 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import chromadb
|
3 |
-
|
4 |
-
import gradio as gr
|
5 |
-
|
6 |
-
from dotenv import load_dotenv
|
7 |
-
from openai import OpenAI
|
8 |
-
|
9 |
-
from langchain_community.embeddings import AnyscaleEmbeddings
|
10 |
-
from langchain_community.vectorstores import Chroma
|
11 |
-
|
12 |
-
qna_system_message = """
|
13 |
-
You are an assistant to an insurance firm who answers user queries on policy documents.
|
14 |
-
User input will have the context required by you to answer user questions.
|
15 |
-
This context will begin with the word: ###Context.
|
16 |
-
The context contains references to specific portions of a document relevant to the user query.
|
17 |
-
|
18 |
-
User questions will begin with the word: ###Question.
|
19 |
-
|
20 |
-
Please answer user questions only using the context provided in the input.
|
21 |
-
Do not mention anything about the context in your final answer. Your response should only contain the answer to the question.
|
22 |
-
|
23 |
-
If the answer is not found in the context, respond "Sorry, I cannot answer your question. Please contact our representative on the hotline 1-800-AWESOMEINSURER".
|
24 |
-
"""
|
25 |
-
|
26 |
-
qna_user_message_template = """
|
27 |
-
###Context
|
28 |
-
Here are some documents that are relevant to the question mentioned below.
|
29 |
-
{context}
|
30 |
-
|
31 |
-
###Question
|
32 |
-
{question}
|
33 |
-
"""
|
34 |
-
|
35 |
-
load_dotenv()
|
36 |
-
|
37 |
-
anyscale_api_key = os.environ['ANYSCALE_API_KEY']
|
38 |
-
|
39 |
-
client = OpenAI(
|
40 |
-
base_url="https://api.endpoints.anyscale.com/v1",
|
41 |
-
api_key=anyscale_api_key
|
42 |
-
)
|
43 |
-
|
44 |
-
qna_model = 'mlabonne/NeuralHermes-2.5-Mistral-7B'
|
45 |
-
|
46 |
-
embedding_model = AnyscaleEmbeddings(
|
47 |
-
client=client,
|
48 |
-
model='thenlper/gte-large'
|
49 |
-
)
|
50 |
-
|
51 |
-
chromadb_client = chromadb.PersistentClient(path='./policy_db')
|
52 |
-
|
53 |
-
vectorstore_persisted = Chroma(
|
54 |
-
client=chromadb_client,
|
55 |
-
collection_name="policy-text",
|
56 |
-
embedding_function=embedding_model
|
57 |
-
)
|
58 |
-
|
59 |
-
retriever = vectorstore_persisted.as_retriever(
|
60 |
-
search_type='similarity',
|
61 |
-
search_kwargs={'k': 5}
|
62 |
-
)
|
63 |
-
|
64 |
-
def predict(question):
|
65 |
-
|
66 |
-
relevant_document_chunks = retriever.invoke(question)
|
67 |
-
context_list = [d.page_content for d in relevant_document_chunks]
|
68 |
-
context_for_query = "\n".join(context_list)
|
69 |
-
|
70 |
-
prompt = [
|
71 |
-
{'role':'system', 'content': qna_system_message},
|
72 |
-
{'role': 'user', 'content': qna_user_message_template.format(
|
73 |
-
context=context_for_query,
|
74 |
-
question=question
|
75 |
-
)
|
76 |
-
}
|
77 |
-
]
|
78 |
-
|
79 |
-
try:
|
80 |
-
response = client.chat.completions.create(
|
81 |
-
model=qna_model,
|
82 |
-
messages=prompt,
|
83 |
-
temperature=0
|
84 |
-
)
|
85 |
-
|
86 |
-
prediction = response.choices[0].message.content.strip()
|
87 |
-
except Exception as e:
|
88 |
-
prediction = f'Sorry, I encountered the following error: \n {e}'
|
89 |
-
|
90 |
-
return prediction
|
91 |
-
|
92 |
-
textbox = gr.Textbox(placeholder="Enter your query here", lines=6)
|
93 |
-
|
94 |
-
demo = gr.Interface(
|
95 |
-
inputs=textbox, fn=predict, outputs="text",
|
96 |
-
title="AMA on your insurance policy document",
|
97 |
-
description="This web API presents an interface to ask questions on contents of your health insurance policy.",
|
98 |
-
article="Note that questions that are not relevant to the policy will not be answered.",
|
99 |
-
examples=[["My trip was delayed and I paid 45, how much am I covered for?", ""],
|
100 |
-
["I just had a baby, is baby food covered?", ""],
|
101 |
-
["How is the gauze used in my operation covered?", ""]
|
102 |
-
],
|
103 |
-
concurrency_limit=16
|
104 |
-
)
|
105 |
-
|
106 |
-
demo.queue()
|
107 |
-
demo.launch(auth=("demouser", os.getenv('PASSWD')))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|