from sklearn.datasets import fetch_openml | |
from sklearn.model_selection import train_test_split | |
from gradio_client import Client | |
client = Client("pgurazada1/diamond-price-predictor") | |
dataset = fetch_openml(data_id=43355, as_frame=True, parser='auto') | |
diamond_prices = dataset.data | |
target = ['price'] | |
numeric_features = ['carat'] | |
categorical_features = ['shape', 'cut', 'color', 'clarity', 'report', 'type'] | |
X = diamond_prices.drop(columns=target) | |
y = diamond_prices[target] | |
Xtrain, Xtest, ytrain, ytest = train_test_split( | |
X, y, | |
test_size=0.2, | |
random_state=42 | |
) | |
job = client.submit( | |
3, # float in 'Carat' Number component | |
"Round", # Literal['Round', 'Princess', 'Emerald', 'Asscher', 'Cushion', 'Radiant', 'Oval', 'Pear', 'Marquise'] in 'Shape' Dropdown component | |
"Ideal", # Literal['Ideal', 'Premium', 'Very Good', 'Good', 'Fair'] in 'Cut' Dropdown component | |
"D", # Literal['D', 'E', 'F', 'G', 'H', 'I', 'J'] in 'Color' Dropdown component | |
"IF", # Literal['IF', 'VVS1', 'VVS2', 'VS1', 'VS2', 'SI1', 'SI2', 'I1'] in 'Clarity' Dropdown component | |
"GIA", # Literal['GIA', 'IGI', 'HRD', 'AGS'] in 'Report' Dropdown component | |
"Natural", # Literal['Natural', 'Lab Grown'] in 'Type' Dropdown component | |
api_name="/predict" | |
) | |
print(job.result()) |