Spaces:
Running
Running
import cv2 | |
from matplotlib import pyplot as plt | |
import PIL.Image as Image | |
import numpy as np | |
def crop_for_filling_pre(image: np.array, mask: np.array, crop_size: int = 512): | |
# Calculate the aspect ratio of the image | |
height, width = image.shape[:2] | |
aspect_ratio = float(width) / float(height) | |
# If the shorter side is less than 512, resize the image proportionally | |
if min(height, width) < crop_size: | |
if height < width: | |
new_height = crop_size | |
new_width = int(new_height * aspect_ratio) | |
else: | |
new_width = crop_size | |
new_height = int(new_width / aspect_ratio) | |
image = cv2.resize(image, (new_width, new_height)) | |
mask = cv2.resize(mask, (new_width, new_height)) | |
# Find the bounding box of the mask | |
x, y, w, h = cv2.boundingRect(mask) | |
# Update the height and width of the resized image | |
height, width = image.shape[:2] | |
# # If the 512x512 square cannot cover the entire mask, resize the image accordingly | |
if w > crop_size or h > crop_size: | |
# padding to square at first | |
if height < width: | |
padding = width - height | |
image = np.pad(image, ((padding // 2, padding - padding // 2), (0, 0), (0, 0)), 'constant') | |
mask = np.pad(mask, ((padding // 2, padding - padding // 2), (0, 0)), 'constant') | |
else: | |
padding = height - width | |
image = np.pad(image, ((0, 0), (padding // 2, padding - padding // 2), (0, 0)), 'constant') | |
mask = np.pad(mask, ((0, 0), (padding // 2, padding - padding // 2)), 'constant') | |
resize_factor = crop_size / max(w, h) | |
image = cv2.resize(image, (0, 0), fx=resize_factor, fy=resize_factor) | |
mask = cv2.resize(mask, (0, 0), fx=resize_factor, fy=resize_factor) | |
x, y, w, h = cv2.boundingRect(mask) | |
# Calculate the crop coordinates | |
crop_x = min(max(x + w // 2 - crop_size // 2, 0), width - crop_size) | |
crop_y = min(max(y + h // 2 - crop_size // 2, 0), height - crop_size) | |
# Crop the image | |
cropped_image = image[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size] | |
cropped_mask = mask[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size] | |
return cropped_image, cropped_mask | |
def crop_for_filling_post( | |
image: np.array, | |
mask: np.array, | |
filled_image: np.array, | |
crop_size: int = 512, | |
): | |
image_copy = image.copy() | |
mask_copy = mask.copy() | |
# Calculate the aspect ratio of the image | |
height, width = image.shape[:2] | |
height_ori, width_ori = height, width | |
aspect_ratio = float(width) / float(height) | |
# If the shorter side is less than 512, resize the image proportionally | |
if min(height, width) < crop_size: | |
if height < width: | |
new_height = crop_size | |
new_width = int(new_height * aspect_ratio) | |
else: | |
new_width = crop_size | |
new_height = int(new_width / aspect_ratio) | |
image = cv2.resize(image, (new_width, new_height)) | |
mask = cv2.resize(mask, (new_width, new_height)) | |
# Find the bounding box of the mask | |
x, y, w, h = cv2.boundingRect(mask) | |
# Update the height and width of the resized image | |
height, width = image.shape[:2] | |
# # If the 512x512 square cannot cover the entire mask, resize the image accordingly | |
if w > crop_size or h > crop_size: | |
flag_padding = True | |
# padding to square at first | |
if height < width: | |
padding = width - height | |
image = np.pad(image, ((padding // 2, padding - padding // 2), (0, 0), (0, 0)), 'constant') | |
mask = np.pad(mask, ((padding // 2, padding - padding // 2), (0, 0)), 'constant') | |
padding_side = 'h' | |
else: | |
padding = height - width | |
image = np.pad(image, ((0, 0), (padding // 2, padding - padding // 2), (0, 0)), 'constant') | |
mask = np.pad(mask, ((0, 0), (padding // 2, padding - padding // 2)), 'constant') | |
padding_side = 'w' | |
resize_factor = crop_size / max(w, h) | |
image = cv2.resize(image, (0, 0), fx=resize_factor, fy=resize_factor) | |
mask = cv2.resize(mask, (0, 0), fx=resize_factor, fy=resize_factor) | |
x, y, w, h = cv2.boundingRect(mask) | |
else: | |
flag_padding = False | |
# Calculate the crop coordinates | |
crop_x = min(max(x + w // 2 - crop_size // 2, 0), width - crop_size) | |
crop_y = min(max(y + h // 2 - crop_size // 2, 0), height - crop_size) | |
# Fill the image | |
image[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size] = filled_image | |
if flag_padding: | |
image = cv2.resize(image, (0, 0), fx=1/resize_factor, fy=1/resize_factor) | |
if padding_side == 'h': | |
image = image[padding // 2:padding // 2 + height_ori, :] | |
else: | |
image = image[:, padding // 2:padding // 2 + width_ori] | |
image = cv2.resize(image, (width_ori, height_ori)) | |
image_copy[mask_copy==255] = image[mask_copy==255] | |
return image_copy | |
if __name__ == '__main__': | |
# image = cv2.imread('example/boat.jpg') | |
# mask = cv2.imread('example/boat_mask_2.png', cv2.IMREAD_GRAYSCALE) | |
image = cv2.imread('./example/groceries.jpg') | |
mask = cv2.imread('example/groceries_mask_2.png', cv2.IMREAD_GRAYSCALE) | |
# image = cv2.imread('example/bridge.jpg') | |
# mask = cv2.imread('example/bridge_mask_2.png', cv2.IMREAD_GRAYSCALE) | |
# image = cv2.imread('example/person_umbrella.jpg') | |
# mask = cv2.imread('example/person_umbrella_mask_2.png', cv2.IMREAD_GRAYSCALE) | |
# image = cv2.imread('example/hippopotamus.jpg') | |
# mask = cv2.imread('example/hippopotamus_mask_1.png', cv2.IMREAD_GRAYSCALE) | |
cropped_image, cropped_mask = crop_for_filling_pre(image, mask) | |
# ^ ------------------------------------------------------------------------------------ | |
# ^ Please conduct inpainting or filling here on the cropped image with the cropped mask | |
# ^ ------------------------------------------------------------------------------------ | |
# e.g. | |
# cropped_image[cropped_mask==255] = 0 | |
cv2.imwrite('cropped_image.jpg', cropped_image) | |
cv2.imwrite('cropped_mask.jpg', cropped_mask) | |
print(cropped_image.shape) | |
print(cropped_mask.shape) | |
image = crop_for_filling_post(image, mask, cropped_image) | |
cv2.imwrite('filled_image.jpg', image) | |
print(image.shape) | |