Spaces:
Runtime error
Runtime error
from gpt_index import GPTSimpleVectorIndex | |
from llama_index.indices.query.query_transform.base import HyDEQueryTransform | |
import gradio as gr | |
from gradio import Interface, Textbox | |
import sys | |
import os | |
from datetime import datetime, timedelta | |
import pytz | |
import huggingface_hub | |
from huggingface_hub import Repository, HfApi | |
from datetime import datetime | |
import csv | |
os.environ["OPENAI_API_KEY"] = os.environ['SECRET_CODE'] | |
AUS_TIMEZONE = pytz.timezone('Australia/Sydney') | |
# Best practice is to use a persistent dataset | |
DATASET_REPO_URL = "https://huggingface.co/datasets/peterpull/MediatorBot" | |
DATA_FILENAME = "data.txt" | |
INDEX_FILENAME = "index2.json" | |
DATA_FILE = os.path.join("data", DATA_FILENAME) | |
INDEX_FILE = os.path.join("data", INDEX_FILENAME) | |
#this will be called later to upload the chat history back to the dataset | |
api=HfApi() | |
# we need a HF access token - read I think suffices becuase we are cloning the distant repo to local space repo. | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
print("HF TOKEN is none?", HF_TOKEN is None) | |
print("HF hub ver", huggingface_hub.__version__) | |
#Clones the distant repo to the local repo | |
repo = Repository( | |
local_dir='data', | |
clone_from=DATASET_REPO_URL, | |
use_auth_token=HF_TOKEN) | |
#PRINT file locations | |
print(f"Repo local_dir: {repo.local_dir}") | |
print(f"Repo files: {os.listdir(repo.local_dir)}") | |
print (f"Index file:{INDEX_FILENAME}") | |
def generate_text() -> str: | |
with open(DATA_FILE) as file: | |
text = "" | |
for line in file: | |
row_parts = line.strip().split(",") | |
if len(row_parts) != 3: | |
continue | |
user, chatbot, time = row_parts | |
text += f"Time: {time}\nUser: {user}\nChatbot: {chatbot}\n\n" | |
return text if text else "No messages yet" | |
def store_message(chatinput: str, chatresponse: str): | |
if chatinput and chatresponse: | |
now = datetime.now() # current time in UTC | |
aus_time = now.astimezone(AUS_TIMEZONE) # convert to Australia timezone | |
timestamp = aus_time.strftime("%Y-%m-%d %H:%M:%S") | |
user_input = f"User: {chatinput}" | |
chatbot_response = f"Chatbot: {chatresponse}" | |
separator = "-" * 30 | |
message = f"{timestamp}\n{user_input}\n{chatbot_response}\n{separator}\n" | |
with open(DATA_FILE, "a") as file: | |
file.write(message) | |
print(f"Wrote to datafile: {message}") | |
#need to find a way to push back to dataset repo | |
HF_WRITE_TOKEN = os.environ.get("WRITE_TOKEN") | |
api.upload_file( | |
path_or_fileobj=DATA_FILE, | |
path_in_repo='data.txt', | |
repo_id="peterpull/MediatorBot", | |
repo_type="dataset", | |
commit_message="Add new chat history", | |
use_auth_token=HF_WRITE_TOKEN) | |
return generate_text() | |
def get_index(index_file_path): | |
if os.path.exists(index_file_path): | |
#print 500 characters of json header | |
print_header_json_file(index_file_path) | |
index_size = os.path.getsize(index_file_path) | |
print(f"Size of {index_file_path}: {index_size} bytes") #let me know how big json file is. | |
loaded_index = GPTSimpleVectorIndex.load_from_disk(index_file_path) | |
return loaded_index | |
else: | |
print(f"Error: '{index_file_path}' does not exist.") | |
sys.exit() | |
def print_header_json_file(filepath): | |
with open(filepath, 'r') as f: | |
file_contents = f.read() | |
print ("JSON FILE HEADER:") | |
print(file_contents[:500]) # print only the first 500 characters | |
index = get_index(INDEX_FILE) | |
# define the conversation_history list | |
conversation_history = [] | |
# passes the prompt to the chatbot | |
def chatbot(input_text, history=conversation_history): | |
hyde= HyDEQueryTransform(include_original=True) | |
prompt = f"In character as John Haynes, please respond to: {input_text}. Only reply with contextual information or say you cannot find an answer. End with a reflective question." | |
response = index.query(prompt, response_mode="default", verbose=True, query_transform=hyde) | |
store_message(input_text,response) | |
# append the current input and response to the conversation history | |
history.append((input_text, response.response)) | |
# return the response and updated conversation history | |
return [(input_text, response.response)], history | |
with open('about.txt', 'r') as file: | |
about = file.read() | |
examples=[["What are three excellent questions to ask at intake?"],["How do you handle high conflict divorce cases?"],["Which metaphors do you steer parties away from in mediation? Which do you prefer?"]] | |
description="GPT3_Chatbot drawing on contextual mediation material, v0.6H" | |
title="The MediatorBot" | |
iface = Interface( | |
fn=chatbot, | |
inputs=[Textbox("Enter your question"), "state"], | |
outputs=["chatbot", "state"], | |
title=title, | |
description=description, | |
article=about, | |
examples=examples) | |
iface.launch() |