|
from dataclasses import dataclass, field |
|
from typing import List, Optional |
|
|
|
from coqpit import Coqpit |
|
|
|
from TTS.vc.configs.shared_configs import BaseVCConfig |
|
|
|
|
|
@dataclass |
|
class FreeVCAudioConfig(Coqpit): |
|
"""Audio configuration |
|
|
|
Args: |
|
max_wav_value (float): |
|
The maximum value of the waveform. |
|
|
|
input_sample_rate (int): |
|
The sampling rate of the input waveform. |
|
|
|
output_sample_rate (int): |
|
The sampling rate of the output waveform. |
|
|
|
filter_length (int): |
|
The length of the filter. |
|
|
|
hop_length (int): |
|
The hop length. |
|
|
|
win_length (int): |
|
The window length. |
|
|
|
n_mel_channels (int): |
|
The number of mel channels. |
|
|
|
mel_fmin (float): |
|
The minimum frequency of the mel filterbank. |
|
|
|
mel_fmax (Optional[float]): |
|
The maximum frequency of the mel filterbank. |
|
""" |
|
|
|
max_wav_value: float = field(default=32768.0) |
|
input_sample_rate: int = field(default=16000) |
|
output_sample_rate: int = field(default=24000) |
|
filter_length: int = field(default=1280) |
|
hop_length: int = field(default=320) |
|
win_length: int = field(default=1280) |
|
n_mel_channels: int = field(default=80) |
|
mel_fmin: float = field(default=0.0) |
|
mel_fmax: Optional[float] = field(default=None) |
|
|
|
|
|
@dataclass |
|
class FreeVCArgs(Coqpit): |
|
"""FreeVC model arguments |
|
|
|
Args: |
|
spec_channels (int): |
|
The number of channels in the spectrogram. |
|
|
|
inter_channels (int): |
|
The number of channels in the intermediate layers. |
|
|
|
hidden_channels (int): |
|
The number of channels in the hidden layers. |
|
|
|
filter_channels (int): |
|
The number of channels in the filter layers. |
|
|
|
n_heads (int): |
|
The number of attention heads. |
|
|
|
n_layers (int): |
|
The number of layers. |
|
|
|
kernel_size (int): |
|
The size of the kernel. |
|
|
|
p_dropout (float): |
|
The dropout probability. |
|
|
|
resblock (str): |
|
The type of residual block. |
|
|
|
resblock_kernel_sizes (List[int]): |
|
The kernel sizes for the residual blocks. |
|
|
|
resblock_dilation_sizes (List[List[int]]): |
|
The dilation sizes for the residual blocks. |
|
|
|
upsample_rates (List[int]): |
|
The upsample rates. |
|
|
|
upsample_initial_channel (int): |
|
The number of channels in the initial upsample layer. |
|
|
|
upsample_kernel_sizes (List[int]): |
|
The kernel sizes for the upsample layers. |
|
|
|
n_layers_q (int): |
|
The number of layers in the quantization network. |
|
|
|
use_spectral_norm (bool): |
|
Whether to use spectral normalization. |
|
|
|
gin_channels (int): |
|
The number of channels in the global conditioning vector. |
|
|
|
ssl_dim (int): |
|
The dimension of the self-supervised learning embedding. |
|
|
|
use_spk (bool): |
|
Whether to use external speaker encoder. |
|
""" |
|
|
|
spec_channels: int = field(default=641) |
|
inter_channels: int = field(default=192) |
|
hidden_channels: int = field(default=192) |
|
filter_channels: int = field(default=768) |
|
n_heads: int = field(default=2) |
|
n_layers: int = field(default=6) |
|
kernel_size: int = field(default=3) |
|
p_dropout: float = field(default=0.1) |
|
resblock: str = field(default="1") |
|
resblock_kernel_sizes: List[int] = field(default_factory=lambda: [3, 7, 11]) |
|
resblock_dilation_sizes: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]) |
|
upsample_rates: List[int] = field(default_factory=lambda: [10, 8, 2, 2]) |
|
upsample_initial_channel: int = field(default=512) |
|
upsample_kernel_sizes: List[int] = field(default_factory=lambda: [16, 16, 4, 4]) |
|
n_layers_q: int = field(default=3) |
|
use_spectral_norm: bool = field(default=False) |
|
gin_channels: int = field(default=256) |
|
ssl_dim: int = field(default=1024) |
|
use_spk: bool = field(default=False) |
|
num_spks: int = field(default=0) |
|
segment_size: int = field(default=8960) |
|
|
|
|
|
@dataclass |
|
class FreeVCConfig(BaseVCConfig): |
|
"""Defines parameters for FreeVC End2End TTS model. |
|
|
|
Args: |
|
model (str): |
|
Model name. Do not change unless you know what you are doing. |
|
|
|
model_args (FreeVCArgs): |
|
Model architecture arguments. Defaults to `FreeVCArgs()`. |
|
|
|
audio (FreeVCAudioConfig): |
|
Audio processing configuration. Defaults to `FreeVCAudioConfig()`. |
|
|
|
grad_clip (List): |
|
Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`. |
|
|
|
lr_gen (float): |
|
Initial learning rate for the generator. Defaults to 0.0002. |
|
|
|
lr_disc (float): |
|
Initial learning rate for the discriminator. Defaults to 0.0002. |
|
|
|
lr_scheduler_gen (str): |
|
Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to |
|
`ExponentialLR`. |
|
|
|
lr_scheduler_gen_params (dict): |
|
Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. |
|
|
|
lr_scheduler_disc (str): |
|
Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to |
|
`ExponentialLR`. |
|
|
|
lr_scheduler_disc_params (dict): |
|
Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. |
|
|
|
scheduler_after_epoch (bool): |
|
If true, step the schedulers after each epoch else after each step. Defaults to `False`. |
|
|
|
optimizer (str): |
|
Name of the optimizer to use with both the generator and the discriminator networks. One of the |
|
`torch.optim.*`. Defaults to `AdamW`. |
|
|
|
kl_loss_alpha (float): |
|
Loss weight for KL loss. Defaults to 1.0. |
|
|
|
disc_loss_alpha (float): |
|
Loss weight for the discriminator loss. Defaults to 1.0. |
|
|
|
gen_loss_alpha (float): |
|
Loss weight for the generator loss. Defaults to 1.0. |
|
|
|
feat_loss_alpha (float): |
|
Loss weight for the feature matching loss. Defaults to 1.0. |
|
|
|
mel_loss_alpha (float): |
|
Loss weight for the mel loss. Defaults to 45.0. |
|
|
|
return_wav (bool): |
|
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`. |
|
|
|
compute_linear_spec (bool): |
|
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`. |
|
|
|
use_weighted_sampler (bool): |
|
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`. |
|
|
|
weighted_sampler_attrs (dict): |
|
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities |
|
by overweighting `root_path` by 2.0. Defaults to `{}`. |
|
|
|
weighted_sampler_multipliers (dict): |
|
Weight each unique value of a key returned by the formatter for weighted sampling. |
|
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`. |
|
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`. |
|
|
|
r (int): |
|
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`. |
|
|
|
add_blank (bool): |
|
If true, a blank token is added in between every character. Defaults to `True`. |
|
|
|
test_sentences (List[List]): |
|
List of sentences with speaker and language information to be used for testing. |
|
|
|
language_ids_file (str): |
|
Path to the language ids file. |
|
|
|
use_language_embedding (bool): |
|
If true, language embedding is used. Defaults to `False`. |
|
|
|
Note: |
|
Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters. |
|
|
|
Example: |
|
|
|
>>> from TTS.vc.configs.freevc_config import FreeVCConfig |
|
>>> config = FreeVCConfig() |
|
""" |
|
|
|
model: str = "freevc" |
|
|
|
model_args: FreeVCArgs = field(default_factory=FreeVCArgs) |
|
audio: FreeVCAudioConfig = field(default_factory=FreeVCAudioConfig) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return_wav: bool = True |
|
compute_linear_spec: bool = True |
|
|
|
|
|
use_weighted_sampler: bool = False |
|
weighted_sampler_attrs: dict = field(default_factory=lambda: {}) |
|
weighted_sampler_multipliers: dict = field(default_factory=lambda: {}) |
|
|
|
|
|
r: int = 1 |
|
add_blank: bool = True |
|
|
|
|
|
|
|
num_speakers: int = 0 |
|
speakers_file: str = None |
|
speaker_embedding_channels: int = 256 |
|
|
|
|
|
use_d_vector_file: bool = False |
|
d_vector_file: List[str] = None |
|
d_vector_dim: int = None |
|
|
|
def __post_init__(self): |
|
for key, val in self.model_args.items(): |
|
if hasattr(self, key): |
|
self[key] = val |
|
|