peterkros's picture
Create app.py
5aee60f verified
raw
history blame
916 Bytes
import gradio as gr
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
# Load model and tokenizer
model_name = "peterkros/immunization-classification-model"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Define the pipeline
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
def classify_text(text):
# Get predictions
predictions = classifier(text)
return predictions
# Create Gradio interface
iface = gr.Interface(
fn=classify_text,
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."),
outputs=gr.outputs.JSON(),
title="Text Classification with DistilBERT",
description="Enter text to classify it using a DistilBERT model trained for text classification."
)
# Launch the app
if __name__ == "__main__":
iface.launch()