Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ from fuzzywuzzy import fuzz
|
|
9 |
st.title("Exploring Torch, Transformers, Rake, and Others analyzing Text")
|
10 |
|
11 |
# Define the options for the dropdown menu, Selecting a remote txt file already created to analyze the text
|
12 |
-
options = ['Apprecitation Letter', 'Regret Letter', 'Kindness Tale', 'Lost Melody Tale', 'Twitter Example 1', 'Twitter Example 2']
|
13 |
|
14 |
# Create a dropdown menu to select options
|
15 |
selected_option = st.selectbox("Select a preset option", options)
|
@@ -40,10 +40,10 @@ def fetch_text_content(selected_option):
|
|
40 |
return ""
|
41 |
|
42 |
# Fetch text content based on selected option
|
43 |
-
|
44 |
|
45 |
# Display text content in a text area
|
46 |
-
jd = st.text_area("Text File Content", text_content)
|
47 |
|
48 |
|
49 |
# Download NLTK resources
|
@@ -90,7 +90,7 @@ text = st.text_area('Enter the text to analyze', jd)
|
|
90 |
|
91 |
if text:
|
92 |
|
93 |
-
with st.expander("Sentiment Analysis", expanded=
|
94 |
# Sentiment analysis
|
95 |
out_sentiment = pipe_sent(text)
|
96 |
# Display sentiment analysis result
|
@@ -99,18 +99,15 @@ if text:
|
|
99 |
sentiment_emoji = 'π' if sentiment_label == 'POSITIVE' else 'π'
|
100 |
sentiment_text = f"Sentiment Score: {sentiment_score}, Sentiment Label: {sentiment_label.capitalize()} {sentiment_emoji}"
|
101 |
st.write(sentiment_text)
|
102 |
-
st.write("β
Completed")
|
103 |
|
104 |
-
with st.expander("Summarization", expanded=
|
105 |
# Summarization
|
106 |
out_summ = pipe_summ(text)
|
107 |
summarized_text = out_summ[0]['summary_text']
|
108 |
st.write(summarized_text)
|
109 |
-
st.write("β
Completed")
|
110 |
|
111 |
-
with st.expander("Keywords Extraction", expanded=
|
112 |
# Keyword extraction
|
113 |
keywords = extract_keywords(text)
|
114 |
keyword_list = [keyword[1] for keyword in keywords]
|
115 |
st.write(keyword_list)
|
116 |
-
st.write("β
Completed")
|
|
|
9 |
st.title("Exploring Torch, Transformers, Rake, and Others analyzing Text")
|
10 |
|
11 |
# Define the options for the dropdown menu, Selecting a remote txt file already created to analyze the text
|
12 |
+
options = ['None','Apprecitation Letter', 'Regret Letter', 'Kindness Tale', 'Lost Melody Tale', 'Twitter Example 1', 'Twitter Example 2']
|
13 |
|
14 |
# Create a dropdown menu to select options
|
15 |
selected_option = st.selectbox("Select a preset option", options)
|
|
|
40 |
return ""
|
41 |
|
42 |
# Fetch text content based on selected option
|
43 |
+
jd = fetch_text_content(selected_option)
|
44 |
|
45 |
# Display text content in a text area
|
46 |
+
#jd = st.text_area("Text File Content", text_content)
|
47 |
|
48 |
|
49 |
# Download NLTK resources
|
|
|
90 |
|
91 |
if text:
|
92 |
|
93 |
+
with st.expander("Sentiment Analysis - β
Completed", expanded=False):
|
94 |
# Sentiment analysis
|
95 |
out_sentiment = pipe_sent(text)
|
96 |
# Display sentiment analysis result
|
|
|
99 |
sentiment_emoji = 'π' if sentiment_label == 'POSITIVE' else 'π'
|
100 |
sentiment_text = f"Sentiment Score: {sentiment_score}, Sentiment Label: {sentiment_label.capitalize()} {sentiment_emoji}"
|
101 |
st.write(sentiment_text)
|
|
|
102 |
|
103 |
+
with st.expander("Summarization - β
Completed", expanded=False):
|
104 |
# Summarization
|
105 |
out_summ = pipe_summ(text)
|
106 |
summarized_text = out_summ[0]['summary_text']
|
107 |
st.write(summarized_text)
|
|
|
108 |
|
109 |
+
with st.expander("Keywords Extraction - β
Completed", expanded=False):
|
110 |
# Keyword extraction
|
111 |
keywords = extract_keywords(text)
|
112 |
keyword_list = [keyword[1] for keyword in keywords]
|
113 |
st.write(keyword_list)
|
|