DragDiffusion / utils /ui_utils.py
peter850421's picture
Upload folder using huggingface_hub
e1ebf71
raw history blame
No virus
24.1 kB
import os
import cv2
import numpy as np
import gradio as gr
from copy import deepcopy
from einops import rearrange
from types import SimpleNamespace
import datetime
import PIL
from PIL import Image
from PIL.ImageOps import exif_transpose
import torch
import torch.nn.functional as F
from diffusers import DDIMScheduler, AutoencoderKL, DPMSolverMultistepScheduler
from drag_pipeline import DragPipeline
from torchvision.utils import save_image
from pytorch_lightning import seed_everything
from .drag_utils import drag_diffusion_update, drag_diffusion_update_gen
from .lora_utils import train_lora
from .attn_utils import register_attention_editor_diffusers, MutualSelfAttentionControl
import imageio
# -------------- general UI functionality --------------
def clear_all(length=480):
return gr.Image.update(value=None, height=length, width=length), \
gr.Image.update(value=None, height=length, width=length), \
gr.Image.update(value=None, height=length, width=length), \
[], None, None
def clear_all_gen(length=480):
return gr.Image.update(value=None, height=length, width=length), \
gr.Image.update(value=None, height=length, width=length), \
gr.Image.update(value=None, height=length, width=length), \
[], None, None, None
def mask_image(image,
mask,
color=[255,0,0],
alpha=0.5):
""" Overlay mask on image for visualization purpose.
Args:
image (H, W, 3) or (H, W): input image
mask (H, W): mask to be overlaid
color: the color of overlaid mask
alpha: the transparency of the mask
"""
out = deepcopy(image)
img = deepcopy(image)
img[mask == 1] = color
out = cv2.addWeighted(img, alpha, out, 1-alpha, 0, out)
return out
def store_img(img, length=512):
image, mask = img["image"], np.float32(img["mask"][:, :, 0]) / 255.
height,width,_ = image.shape
image = Image.fromarray(image)
image = exif_transpose(image)
image = image.resize((length,int(length*height/width)), PIL.Image.BILINEAR)
mask = cv2.resize(mask, (length,int(length*height/width)), interpolation=cv2.INTER_NEAREST)
image = np.array(image)
if mask.sum() > 0:
mask = np.uint8(mask > 0)
masked_img = mask_image(image, 1 - mask, color=[0, 0, 0], alpha=0.3)
else:
masked_img = image.copy()
# when new image is uploaded, `selected_points` should be empty
return image, [], masked_img, mask
# once user upload an image, the original image is stored in `original_image`
# the same image is displayed in `input_image` for point clicking purpose
def store_img_gen(img):
image, mask = img["image"], np.float32(img["mask"][:, :, 0]) / 255.
image = Image.fromarray(image)
image = exif_transpose(image)
image = np.array(image)
if mask.sum() > 0:
mask = np.uint8(mask > 0)
masked_img = mask_image(image, 1 - mask, color=[0, 0, 0], alpha=0.3)
else:
masked_img = image.copy()
# when new image is uploaded, `selected_points` should be empty
return image, [], masked_img, mask
# user click the image to get points, and show the points on the image
def get_points(img,
sel_pix,
evt: gr.SelectData):
img_copy = img.copy() if isinstance(img, np.ndarray) else np.array(img)
# collect the selected point
sel_pix.append(evt.index)
# draw points
points = []
for idx, point in enumerate(sel_pix):
if idx % 2 == 0:
# draw a red circle at the handle point
cv2.circle(img_copy, tuple(point), 10, (255, 0, 0), -1)
else:
# draw a blue circle at the handle point
cv2.circle(img_copy, tuple(point), 10, (0, 0, 255), -1)
points.append(tuple(point))
# draw an arrow from handle point to target point
if len(points) == 2:
cv2.arrowedLine(img_copy, points[0], points[1], (255, 255, 255), 4, tipLength=0.5)
points = []
return img_copy if isinstance(img, np.ndarray) else np.array(img_copy)
# clear all handle/target points
def undo_points(original_image,
mask):
if mask.sum() > 0:
mask = np.uint8(mask > 0)
masked_img = mask_image(original_image, 1 - mask, color=[0, 0, 0], alpha=0.3)
else:
masked_img = original_image.copy()
return masked_img, []
# ------------------------------------------------------
# ----------- dragging user-input image utils -----------
def train_lora_interface(original_image,
prompt,
model_path,
vae_path,
lora_path,
lora_step,
lora_lr,
lora_rank,
progress=gr.Progress()):
train_lora(
original_image,
prompt,
model_path,
vae_path,
lora_path,
lora_step,
lora_lr,
lora_rank,
progress)
return "Training LoRA Done!"
def preprocess_image(image,
device):
image = torch.from_numpy(image).float() / 127.5 - 1 # [-1, 1]
image = rearrange(image, "h w c -> 1 c h w")
image = image.to(device)
return image
def run_drag(source_image,
image_with_clicks,
mask,
prompt,
points,
inversion_strength,
lam,
latent_lr,
n_pix_step,
model_path,
vae_path,
lora_path,
start_step,
start_layer,
create_gif_checkbox,
gif_interval,
save_dir="./results"
):
# initialize model
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012,
beta_schedule="scaled_linear", clip_sample=False,
set_alpha_to_one=False, steps_offset=1)
model = DragPipeline.from_pretrained(model_path, scheduler=scheduler).to(device)
# call this function to override unet forward function,
# so that intermediate features are returned after forward
model.modify_unet_forward()
# set vae
if vae_path != "default":
model.vae = AutoencoderKL.from_pretrained(
vae_path
).to(model.vae.device, model.vae.dtype)
# initialize parameters
seed = 42 # random seed used by a lot of people for unknown reason
seed_everything(seed)
args = SimpleNamespace()
args.prompt = prompt
args.points = points
args.n_inference_step = 50
args.n_actual_inference_step = round(inversion_strength * args.n_inference_step)
args.guidance_scale = 1.0
args.unet_feature_idx = [3]
args.sup_res = 256
args.r_m = 1
args.r_p = 3
args.lam = lam
args.lr = latent_lr
args.n_pix_step = n_pix_step
args.create_gif_checkbox = create_gif_checkbox
args.gif_interval = gif_interval
print(args)
full_h, full_w = source_image.shape[:2]
source_image = preprocess_image(source_image, device)
image_with_clicks = preprocess_image(image_with_clicks, device)
# set lora
if lora_path == "":
print("applying default parameters")
model.unet.set_default_attn_processor()
else:
print("applying lora: " + lora_path)
model.unet.load_attn_procs(lora_path)
# invert the source image
# the latent code resolution is too small, only 64*64
invert_code = model.invert(source_image,
prompt,
guidance_scale=args.guidance_scale,
num_inference_steps=args.n_inference_step,
num_actual_inference_steps=args.n_actual_inference_step)
mask = torch.from_numpy(mask).float() / 255.
mask[mask > 0.0] = 1.0
mask = rearrange(mask, "h w -> 1 1 h w").cuda()
mask = F.interpolate(mask, (args.sup_res, args.sup_res), mode="nearest")
handle_points = []
target_points = []
# here, the point is in x,y coordinate
for idx, point in enumerate(points):
cur_point = torch.tensor([point[1] / full_h, point[0] / full_w]) * args.sup_res
cur_point = torch.round(cur_point)
if idx % 2 == 0:
handle_points.append(cur_point)
else:
target_points.append(cur_point)
print('handle points:', handle_points)
print('target points:', target_points)
init_code = invert_code
init_code_orig = deepcopy(init_code)
model.scheduler.set_timesteps(args.n_inference_step)
t = model.scheduler.timesteps[args.n_inference_step - args.n_actual_inference_step]
# feature shape: [1280,16,16], [1280,32,32], [640,64,64], [320,64,64]
# update according to the given supervision
updated_init_code, gif_updated_init_code = drag_diffusion_update(model, init_code, t,
handle_points, target_points, mask, args)
# hijack the attention module
# inject the reference branch to guide the generation
editor = MutualSelfAttentionControl(start_step=start_step,
start_layer=start_layer,
total_steps=args.n_inference_step,
guidance_scale=args.guidance_scale)
if lora_path == "":
register_attention_editor_diffusers(model, editor, attn_processor='attn_proc')
else:
register_attention_editor_diffusers(model, editor, attn_processor='lora_attn_proc')
# inference the synthesized image
gen_image = model(
prompt=args.prompt,
batch_size=2,
latents=torch.cat([init_code_orig, updated_init_code], dim=0),
guidance_scale=args.guidance_scale,
num_inference_steps=args.n_inference_step,
num_actual_inference_steps=args.n_actual_inference_step
)[1].unsqueeze(dim=0)
# if gif, inference the synthesized image for each step and save them to gif
if args.create_gif_checkbox:
out_frames = []
for step_updated_init_code in gif_updated_init_code:
gen_image = model(
prompt=args.prompt,
batch_size=1,
latents=step_updated_init_code,
guidance_scale=args.guidance_scale,
num_inference_steps=args.n_inference_step,
num_actual_inference_steps=args.n_actual_inference_step
).unsqueeze(dim=0)
out_frame = gen_image.cpu().permute(0, 2, 3, 1).numpy()[0]
out_frame = (out_frame * 255).astype(np.uint8)
out_frames.append(out_frame)
#save the gif
if not os.path.isdir(save_dir):
os.mkdir(save_dir)
save_prefix = datetime.datetime.now().strftime("%Y-%m-%d-%H%M-%S")
imageio.mimsave(os.path.join(save_dir, save_prefix + '.gif'), out_frames, fps=10)
# save the original image, user editing instructions, synthesized image
save_result = torch.cat([
source_image * 0.5 + 0.5,
torch.ones((1,3,512,25)).cuda(),
image_with_clicks * 0.5 + 0.5,
torch.ones((1,3,512,25)).cuda(),
gen_image[0:1]
], dim=-1)
if not os.path.isdir(save_dir):
os.mkdir(save_dir)
save_prefix = datetime.datetime.now().strftime("%Y-%m-%d-%H%M-%S")
save_image(save_result, os.path.join(save_dir, save_prefix + '.png'))
out_image = gen_image.cpu().permute(0, 2, 3, 1).numpy()[0]
out_image = (out_image * 255).astype(np.uint8)
return out_image
# -------------------------------------------------------
# ----------- dragging generated image utils -----------
# once the user generated an image
# it will be displayed on mask drawing-areas and point-clicking area
def gen_img(
length, # length of the window displaying the image
height, # height of the generated image
width, # width of the generated image
n_inference_step,
scheduler_name,
seed,
guidance_scale,
prompt,
neg_prompt,
model_path,
vae_path,
lora_path):
# initialize model
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = DragPipeline.from_pretrained(model_path, torch_dtype=torch.float16).to(device)
if scheduler_name == "DDIM":
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012,
beta_schedule="scaled_linear", clip_sample=False,
set_alpha_to_one=False, steps_offset=1)
elif scheduler_name == "DPM++2M":
scheduler = DPMSolverMultistepScheduler.from_config(
model.scheduler.config
)
elif scheduler_name == "DPM++2M_karras":
scheduler = DPMSolverMultistepScheduler.from_config(
model.scheduler.config, use_karras_sigmas=True
)
else:
raise NotImplementedError("scheduler name not correct")
model.scheduler = scheduler
# call this function to override unet forward function,
# so that intermediate features are returned after forward
model.modify_unet_forward()
# set vae
if vae_path != "default":
model.vae = AutoencoderKL.from_pretrained(
vae_path
).to(model.vae.device, model.vae.dtype)
# set lora
#if lora_path != "":
# print("applying lora for image generation: " + lora_path)
# model.unet.load_attn_procs(lora_path)
if lora_path != "":
print("applying lora: " + lora_path)
model.load_lora_weights(lora_path, weight_name="lora.safetensors")
# initialize init noise
seed_everything(seed)
init_noise = torch.randn([1, 4, height // 8, width // 8], device=device, dtype=model.vae.dtype)
gen_image, intermediate_latents = model(prompt=prompt,
neg_prompt=neg_prompt,
num_inference_steps=n_inference_step,
latents=init_noise,
guidance_scale=guidance_scale,
return_intermediates=True)
gen_image = gen_image.cpu().permute(0, 2, 3, 1).numpy()[0]
gen_image = (gen_image * 255).astype(np.uint8)
if height < width:
# need to do this due to Gradio's bug
return gr.Image.update(value=gen_image, height=int(length*height/width), width=length), \
gr.Image.update(height=int(length*height/width), width=length), \
gr.Image.update(height=int(length*height/width), width=length), \
None, \
intermediate_latents
else:
return gr.Image.update(value=gen_image, height=length, width=length), \
gr.Image.update(value=None, height=length, width=length), \
gr.Image.update(value=None, height=length, width=length), \
None, \
intermediate_latents
def run_drag_gen(
n_inference_step,
scheduler_name,
source_image,
image_with_clicks,
intermediate_latents_gen,
guidance_scale,
mask,
prompt,
neg_prompt,
points,
inversion_strength,
lam,
latent_lr,
n_pix_step,
model_path,
vae_path,
lora_path,
start_step,
start_layer,
create_gif_checkbox,
create_tracking_points_checkbox,
gif_interval,
gif_fps,
save_dir="./results"):
# initialize model
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = DragPipeline.from_pretrained(model_path, torch_dtype=torch.float16).to(device)
if scheduler_name == "DDIM":
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012,
beta_schedule="scaled_linear", clip_sample=False,
set_alpha_to_one=False, steps_offset=1)
elif scheduler_name == "DPM++2M":
scheduler = DPMSolverMultistepScheduler.from_config(
model.scheduler.config
)
elif scheduler_name == "DPM++2M_karras":
scheduler = DPMSolverMultistepScheduler.from_config(
model.scheduler.config, use_karras_sigmas=True
)
else:
raise NotImplementedError("scheduler name not correct")
model.scheduler = scheduler
# call this function to override unet forward function,
# so that intermediate features are returned after forward
model.modify_unet_forward()
# set vae
if vae_path != "default":
model.vae = AutoencoderKL.from_pretrained(
vae_path
).to(model.vae.device, model.vae.dtype)
# initialize parameters
seed = 42 # random seed used by a lot of people for unknown reason
seed_everything(seed)
args = SimpleNamespace()
args.prompt = prompt
args.neg_prompt = neg_prompt
args.points = points
args.n_inference_step = n_inference_step
args.n_actual_inference_step = round(n_inference_step * inversion_strength)
args.guidance_scale = guidance_scale
args.unet_feature_idx = [3]
full_h, full_w = source_image.shape[:2]
args.sup_res_h = int(0.5*full_h)
args.sup_res_w = int(0.5*full_w)
args.r_m = 1
args.r_p = 3
args.lam = lam
args.lr = latent_lr
args.n_pix_step = n_pix_step
args.create_gif_checkbox = create_gif_checkbox
args.create_tracking_points_checkbox = create_tracking_points_checkbox
args.gif_interval = gif_interval
print(args)
source_image = preprocess_image(source_image, device)
image_with_clicks = preprocess_image(image_with_clicks, device)
# set lora
#if lora_path == "":
# print("applying default parameters")
# model.unet.set_default_attn_processor()
#else:
# print("applying lora: " + lora_path)
# model.unet.load_attn_procs(lora_path)
if lora_path != "":
print("applying lora: " + lora_path)
model.load_lora_weights(lora_path, weight_name="lora.safetensors")
mask = torch.from_numpy(mask).float() / 255.
mask[mask > 0.0] = 1.0
mask = rearrange(mask, "h w -> 1 1 h w").cuda()
mask = F.interpolate(mask, (args.sup_res_h, args.sup_res_w), mode="nearest")
handle_points = []
target_points = []
# here, the point is in x,y coordinate
for idx, point in enumerate(points):
cur_point = torch.tensor([point[1]/full_h*args.sup_res_h, point[0]/full_w*args.sup_res_w])
cur_point = torch.round(cur_point)
if idx % 2 == 0:
handle_points.append(cur_point)
else:
target_points.append(cur_point)
print('handle points:', handle_points)
print('target points:', target_points)
model.scheduler.set_timesteps(args.n_inference_step)
t = model.scheduler.timesteps[args.n_inference_step - args.n_actual_inference_step]
init_code = deepcopy(intermediate_latents_gen[args.n_inference_step - args.n_actual_inference_step])
init_code_orig = deepcopy(init_code)
# feature shape: [1280,16,16], [1280,32,32], [640,64,64], [320,64,64]
# update according to the given supervision
init_code = init_code.to(torch.float32)
model = model.to(device, torch.float32)
updated_init_code, gif_updated_init_code, handle_points_list = drag_diffusion_update_gen(model, init_code, t,
handle_points, target_points, mask, args)
updated_init_code = updated_init_code.to(torch.float16)
model = model.to(device, torch.float16)
# hijack the attention module
# inject the reference branch to guide the generation
editor = MutualSelfAttentionControl(start_step=start_step,
start_layer=start_layer,
total_steps=args.n_inference_step,
guidance_scale=args.guidance_scale)
if lora_path == "":
register_attention_editor_diffusers(model, editor, attn_processor='attn_proc')
else:
register_attention_editor_diffusers(model, editor, attn_processor='lora_attn_proc')
# inference the synthesized image
gen_image = model(
prompt=args.prompt,
neg_prompt=args.neg_prompt,
batch_size=2, # batch size is 2 because we have reference init_code and updated init_code
latents=torch.cat([init_code_orig, updated_init_code], dim=0),
guidance_scale=args.guidance_scale,
num_inference_steps=args.n_inference_step,
num_actual_inference_steps=args.n_actual_inference_step
)[1].unsqueeze(dim=0)
# if gif, inference the synthesized image for each step and save them to gif
if args.create_gif_checkbox:
out_frames = []
print('Start Generate GIF')
for step_updated_init_code in gif_updated_init_code:
step_updated_init_code = step_updated_init_code.to(torch.float16)
gen_image = model(
prompt=args.prompt,
batch_size=2,
latents=torch.cat([init_code_orig, step_updated_init_code], dim=0),
guidance_scale=args.guidance_scale,
num_inference_steps=args.n_inference_step,
num_actual_inference_steps=args.n_actual_inference_step
)[1].unsqueeze(dim=0)
out_frame = gen_image.cpu().permute(0, 2, 3, 1).numpy()[0]
out_frame = (out_frame * 255).astype(np.uint8)
out_frames.append(out_frame)
#save the gif
if not os.path.isdir(save_dir):
os.mkdir(save_dir)
save_prefix = datetime.datetime.now().strftime("%Y-%m-%d-%H%M-%S")
imageio.mimsave(os.path.join(save_dir, save_prefix + '.gif'), out_frames, fps=gif_fps)
if args.create_tracking_points_checkbox:
white_image_base = np.ones((full_h, full_w, 3), dtype=np.uint8) * 255
out_points_frames = []
previous_points = {i: None for i in range(len(handle_points))} # To store the previous locations of points
print('Start Generate Tracking Points GIF', len(handle_points_list), handle_points_list)
for step_idx, step_handle_points in enumerate(handle_points_list):
out_points_frame = white_image_base.copy()
for idx, point in enumerate(step_handle_points):
current_point = (int(point[1].item()), int(point[0].item()))
# Draw a circle at the handle point
cv2.circle(out_points_frame, current_point, 4, (0, 0, 255), -1)
# Optionally, add text labels
cv2.putText(out_points_frame, f'P{idx}', (current_point[0] + 5, current_point[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
# Draw lines to show trajectory
if previous_points[idx] is not None:
cv2.line(out_points_frame, previous_points[idx], current_point, (0, 255, 0), 2)
previous_points[idx] = current_point
out_points_frame = out_points_frame.astype(np.uint8)
out_points_frames.append(out_points_frame)
# Save the gif
if not os.path.isdir(save_dir):
os.mkdir(save_dir)
save_prefix = datetime.datetime.now().strftime("%Y-%m-%d-%H%M-%S")
imageio.mimsave(os.path.join(save_dir, save_prefix + '_tracking_points.gif'), out_points_frames, fps=gif_fps)
# save the original image, user editing instructions, synthesized image
save_result = torch.cat([
source_image * 0.5 + 0.5,
torch.ones((1,3,full_h,25)).cuda(),
image_with_clicks * 0.5 + 0.5,
torch.ones((1,3,full_h,25)).cuda(),
gen_image[0:1]
], dim=-1)
if not os.path.isdir(save_dir):
os.mkdir(save_dir)
save_prefix = datetime.datetime.now().strftime("%Y-%m-%d-%H%M-%S")
save_image(save_result, os.path.join(save_dir, save_prefix + '.png'))
out_image = gen_image.cpu().permute(0, 2, 3, 1).numpy()[0]
out_image = (out_image * 255).astype(np.uint8)
return out_image
# ------------------------------------------------------