|
import gradio as gr |
|
import subprocess |
|
import uuid |
|
import os |
|
import requests |
|
|
|
|
|
def get_pdf(pdf_link): |
|
|
|
unique_filename = f"input/downloaded_paper_{uuid.uuid4().hex}.pdf" |
|
|
|
|
|
response = requests.get(pdf_link) |
|
|
|
if response.status_code == 200: |
|
|
|
with open(unique_filename, 'wb') as pdf_file: |
|
pdf_file.write(response.content) |
|
print("PDF downloaded successfully.") |
|
else: |
|
print("Failed to download the PDF.") |
|
return unique_filename |
|
|
|
|
|
def nougat_ocr(file_name): |
|
|
|
|
|
|
|
cli_command = [ |
|
'nougat', |
|
|
|
'--out', 'output', |
|
'pdf', f'{file_name}', |
|
'--checkpoint', 'nougat' |
|
] |
|
|
|
|
|
|
|
subprocess.run(cli_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) |
|
|
|
return |
|
|
|
|
|
def predict(pdf_file, pdf_link): |
|
if pdf_file is None: |
|
if pdf_link == '': |
|
print("No file is uploaded and No link is provided") |
|
return "No data provided. Upload a pdf file or provide a pdf link and try again!" |
|
else: |
|
print(f'pdf_link is - {pdf_link}') |
|
file_name = get_pdf(pdf_link) |
|
print(f'file_name is - {file_name}') |
|
else: |
|
file_name = pdf_file.name |
|
print(file_name) |
|
pdf_name = pdf_file.name.split('/')[-1].split('.')[0] |
|
print(pdf_name) |
|
|
|
|
|
nougat_ocr(file_name) |
|
|
|
|
|
|
|
file_name = file_name.split('/')[-1][:-4] |
|
with open(f'output/{file_name}.mmd', 'r') as file: |
|
content = file.read() |
|
return content |
|
|
|
|
|
|
|
|
|
def nougat_ocr1(file_name): |
|
print('******* inside nougat_ocr *******') |
|
|
|
cli_command = [ |
|
'nougat', |
|
'--out', 'output', |
|
'pdf', f'{file_name}', |
|
'--checkpoint', 'nougat' |
|
] |
|
|
|
|
|
subprocess.run(cli_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) |
|
return |
|
|
|
|
|
def predict1(pdf_file): |
|
print('******* inside predict *******') |
|
print(f"temporary file - {pdf_file.name}") |
|
pdf_name = pdf_file.name.split('/')[-1].split('.')[0] |
|
print(f"pdf file name - {pdf_name}") |
|
|
|
|
|
nougat_ocr(pdf_file.name) |
|
print("BAACCKKK") |
|
|
|
|
|
with open(f'output/{pdf_name}.mmd', 'r') as file: |
|
content = file.read() |
|
|
|
return content |
|
|
|
def process_example(pdf_file,pdf_link): |
|
ocr_content = paper_read(pdf_file,pdf_link) |
|
return ocr_content |
|
|
|
css = """ |
|
#mkd { |
|
height: 500px; |
|
overflow: auto; |
|
border: 1px solid #ccc; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.HTML("<h1><center>Nougat: Neural Optical Understanding for Academic Documents<center><h1>") |
|
gr.HTML("<h3><center>Lukas Blecher et al. <a href='https://arxiv.org/pdf/2308.13418.pdf' target='_blank'>Paper</a>, <a href='https://facebookresearch.github.io/nougat/'>Project</a><center></h3>") |
|
|
|
with gr.Row(): |
|
mkd = gr.Markdown('<h4><center>Upload a PDF</center></h4>',scale=1) |
|
mkd = gr.Markdown('<h4><center><i>OR</i></center></h4>',scale=1) |
|
mkd = gr.Markdown('<h4><center>Provide a PDF link</center></h4>',scale=1) |
|
|
|
with gr.Row(equal_height=True): |
|
pdf_file = gr.File(label='PDF📃', file_count='single', scale=1) |
|
pdf_link = gr.Textbox(placeholder='Enter an Arxiv link here', label='PDF link🔗🌐', scale=1) |
|
|
|
with gr.Row(): |
|
btn = gr.Button('Run NOUGAT🍫') |
|
clr = gr.Button('Clear🚿') |
|
parsed_output = gr.Markdown(elem_id='mkd', value='📃🔤OCR Output') |
|
|
|
btn.click(predict, [pdf_file, pdf_link], parsed_output ) |
|
clr.click(lambda : (gr.update(value=None), |
|
gr.update(value=None), |
|
gr.update(value=None)), |
|
[], |
|
[pdf_file, pdf_link, parsed_output] |
|
) |
|
|
|
gr.Examples( |
|
[["input/nougat.pdf", ""], [None, "https://arxiv.org/pdf/2308.08316.pdf"]], |
|
inputs = [pdf_file, pdf_link], |
|
outputs = parsed_output, |
|
fn=process_example, |
|
cache_examples=True, |
|
label='Click on any Examples below to get Nougat OCR results quickly:' |
|
) |
|
|
|
demo.queue() |
|
demo.launch(debug=True) |
|
|