Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,28 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
|
4 |
+
pipe = pipeline("text-classification", model="peter2000/xlm-roberta-base-finetuned-ecoicop")
|
|
|
5 |
|
6 |
+
def predict(text):
|
7 |
+
preds = pipe(text)[0]
|
8 |
+
return preds["label"].split('_')[1],preds["label"].split('_')[0], round(preds["score"], 5)
|
9 |
+
|
10 |
+
gradio_ui = gr.Interface(
|
11 |
+
fn=predict,
|
12 |
+
title="Predicting E-Coicop Product Categories",
|
13 |
+
description="Enter some product text (trained on name, category and url) from an online supermarket and predict the corresponding ECOICOP (level 5) product category for food and baverages.",
|
14 |
+
inputs=[
|
15 |
+
gr.inputs.Textbox(lines=5, label="Paste some text here"),
|
16 |
+
],
|
17 |
+
outputs=[
|
18 |
+
gr.outputs.Textbox(label="Label"),
|
19 |
+
gr.outputs.Textbox(label="Score"),
|
20 |
+
],
|
21 |
+
examples=[
|
22 |
+
["Tiefkühl Eiscreme & Eiswürfel Bechereis <sep> rewe beste wahl peanut butter eiscreme <sep> REWE Beste Wahl Peanut Butter Eiscreme 500ml"],
|
23 |
+
["epicerie-sucree <sep> cereales chocolat fraise nat <sep> Céréales chocolat & fraise NAT"],
|
24 |
+
["Pelati e passate <sep> unknown <sep> Mutti Polpa di Pomodoro 3 x 400 g"]
|
25 |
+
],
|
26 |
+
)
|
27 |
+
|
28 |
+
gradio_ui.launch(debug=True)
|