Spaces:
Sleeping
Sleeping
perman2011
commited on
Commit
•
5708132
1
Parent(s):
cd647f0
Update app.py
Browse files
app.py
CHANGED
@@ -13,8 +13,6 @@ nltk.download('punkt')
|
|
13 |
|
14 |
import streamlit as st
|
15 |
|
16 |
-
import functions
|
17 |
-
|
18 |
|
19 |
# Preprocess function
|
20 |
from nltk.corpus import stopwords
|
@@ -72,10 +70,46 @@ model_NB = joblib.load(model_NB_path)
|
|
72 |
model_LR_path = './model_LR.sav'
|
73 |
model_LR = joblib.load(model_LR_path)
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
text = st.text_area('Enter some text !!! (English text : D )')
|
77 |
if text:
|
78 |
-
out =
|
79 |
if out == 0:
|
80 |
out = 'negative'
|
81 |
st.json(out)
|
|
|
13 |
|
14 |
import streamlit as st
|
15 |
|
|
|
|
|
16 |
|
17 |
# Preprocess function
|
18 |
from nltk.corpus import stopwords
|
|
|
70 |
model_LR_path = './model_LR.sav'
|
71 |
model_LR = joblib.load(model_LR_path)
|
72 |
|
73 |
+
def sentiment_analysis_LR(input):
|
74 |
+
# Assuming you have a Logistic Regression model and TfidfVectorizer in the pipeline
|
75 |
+
input = preprocess_text(input)
|
76 |
+
|
77 |
+
vectorizer = model_LR.named_steps['tfidfvectorizer']
|
78 |
+
lr_classifier = model_LR.named_steps['logisticregression']
|
79 |
+
|
80 |
+
# Transform the user input using the TF-IDF vectorizer
|
81 |
+
user_input_tfidf = vectorizer.transform([input])
|
82 |
+
|
83 |
+
# Make predictions
|
84 |
+
user_pred = lr_classifier.predict(user_input_tfidf)
|
85 |
+
|
86 |
+
# Display the prediction
|
87 |
+
if user_pred[0] == 0:
|
88 |
+
return 0
|
89 |
+
else:
|
90 |
+
return 1
|
91 |
+
|
92 |
+
def sentiment_analysis_NB(input):
|
93 |
+
input = preprocess_text(input)
|
94 |
+
|
95 |
+
vectorizer = model_NB.named_steps['tfidf']
|
96 |
+
nb_classifier = model_NB.named_steps['nb']
|
97 |
+
|
98 |
+
# Transform the user input using the TF-IDF vectorizer
|
99 |
+
user_input_tfidf = vectorizer.transform([input])
|
100 |
+
|
101 |
+
# Make predictions
|
102 |
+
user_pred = nb_classifier.predict(user_input_tfidf)
|
103 |
+
|
104 |
+
# Display the prediction
|
105 |
+
if user_pred[0] == 0:
|
106 |
+
return 0
|
107 |
+
else:
|
108 |
+
return 1
|
109 |
|
110 |
text = st.text_area('Enter some text !!! (English text : D )')
|
111 |
if text:
|
112 |
+
out = sentiment_analysis_LR(text)
|
113 |
if out == 0:
|
114 |
out = 'negative'
|
115 |
st.json(out)
|