Spaces:
Sleeping
Sleeping
from nltk.corpus import stopwords | |
from nltk.tokenize import word_tokenize | |
def sentiment_analysis_LR(input): | |
# Assuming you have a Logistic Regression model and TfidfVectorizer in the pipeline | |
input = preprocess_text(input) | |
vectorizer = model_LR.named_steps['tfidfvectorizer'] | |
lr_classifier = model_LR.named_steps['logisticregression'] | |
# Transform the user input using the TF-IDF vectorizer | |
user_input_tfidf = vectorizer.transform([input]) | |
# Make predictions | |
user_pred = lr_classifier.predict(user_input_tfidf) | |
# Display the prediction | |
if user_pred[0] == 0: | |
return 0 | |
else: | |
return 1 | |
def sentiment_analysis_NB(input): | |
input = preprocess_text(input) | |
vectorizer = model_NB.named_steps['tfidf'] | |
nb_classifier = model_NB.named_steps['nb'] | |
# Transform the user input using the TF-IDF vectorizer | |
user_input_tfidf = vectorizer.transform([input]) | |
# Make predictions | |
user_pred = nb_classifier.predict(user_input_tfidf) | |
# Display the prediction | |
if user_pred[0] == 0: | |
return 0 | |
else: | |
return 1 | |