Spaces:
Sleeping
Sleeping
| from nltk.corpus import stopwords | |
| from nltk.tokenize import word_tokenize | |
| def sentiment_analysis_LR(input): | |
| # Assuming you have a Logistic Regression model and TfidfVectorizer in the pipeline | |
| input = preprocess_text(input) | |
| vectorizer = model_LR.named_steps['tfidfvectorizer'] | |
| lr_classifier = model_LR.named_steps['logisticregression'] | |
| # Transform the user input using the TF-IDF vectorizer | |
| user_input_tfidf = vectorizer.transform([input]) | |
| # Make predictions | |
| user_pred = lr_classifier.predict(user_input_tfidf) | |
| # Display the prediction | |
| if user_pred[0] == 0: | |
| return 0 | |
| else: | |
| return 1 | |
| def sentiment_analysis_NB(input): | |
| input = preprocess_text(input) | |
| vectorizer = model_NB.named_steps['tfidf'] | |
| nb_classifier = model_NB.named_steps['nb'] | |
| # Transform the user input using the TF-IDF vectorizer | |
| user_input_tfidf = vectorizer.transform([input]) | |
| # Make predictions | |
| user_pred = nb_classifier.predict(user_input_tfidf) | |
| # Display the prediction | |
| if user_pred[0] == 0: | |
| return 0 | |
| else: | |
| return 1 | |