Spaces:
Running
Running
Yotam-Perlitz
commited on
Commit
β’
a3b611d
1
Parent(s):
9e72aa4
improve logic
Browse filesSigned-off-by: Yotam-Perlitz <y.perlitz@ibm.com>
app.py
CHANGED
@@ -8,6 +8,26 @@ from bat import Benchmark, Config, Reporter, Tester
|
|
8 |
from datetime import datetime
|
9 |
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
holistic_scenarios = [
|
12 |
"Helm Lite",
|
13 |
"HF OpenLLM v2",
|
@@ -21,14 +41,38 @@ holistic_scenarios = [
|
|
21 |
|
22 |
|
23 |
st.markdown(
|
24 |
-
"""
|
|
|
|
|
25 |
unsafe_allow_html=True,
|
26 |
)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
st.markdown(
|
29 |
"""
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
"""
|
33 |
)
|
34 |
|
@@ -38,26 +82,19 @@ all_scenarios_for_aggragate = (
|
|
38 |
all_scenarios_for_aggragate.df["scenario"].unique().tolist()
|
39 |
)
|
40 |
|
41 |
-
st.
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
with st.form("my_form_0"):
|
46 |
-
# leftcol, rightcol = st.columns([5, 1])
|
47 |
-
# with leftcol:
|
48 |
-
aggragate_scenarios = st.multiselect(
|
49 |
-
"Scenarios in Aggregate (defualts are the 'Holistic' benchmarks)",
|
50 |
-
all_scenarios_for_aggragate,
|
51 |
-
holistic_scenarios,
|
52 |
-
)
|
53 |
-
# with rightcol:
|
54 |
-
# st.markdown("###")
|
55 |
-
submitted = st.form_submit_button(label="\n\nRun BAT\n\n")
|
56 |
-
|
57 |
-
with st.expander("Leaderboard configurations (defaults are great BTW)", icon="βοΈ"):
|
58 |
with st.form("my_form_1"):
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
corr_type = st.selectbox(
|
60 |
-
label="
|
61 |
)
|
62 |
|
63 |
aggregate_scenario_whitelist = aggragate_scenarios
|
@@ -68,13 +105,13 @@ with st.expander("Leaderboard configurations (defaults are great BTW)", icon="
|
|
68 |
# ]
|
69 |
|
70 |
model_select_strategy = st.selectbox(
|
71 |
-
label="Select strategy",
|
72 |
options=["random", "top_aggregate", "somewhere_aggregate"],
|
73 |
index=0,
|
74 |
)
|
75 |
|
76 |
n_models_taken_list = st.slider(
|
77 |
-
label="
|
78 |
min_value=3,
|
79 |
max_value=15,
|
80 |
value=8,
|
@@ -82,46 +119,67 @@ with st.expander("Leaderboard configurations (defaults are great BTW)", icon="
|
|
82 |
|
83 |
n_models_taken_list = [n_models_taken_list]
|
84 |
|
85 |
-
n_exps =
|
86 |
|
87 |
submitted = st.form_submit_button(label="Run BAT")
|
88 |
|
|
|
89 |
with st.expander("Add your benchmarks here!", icon="π₯"):
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
my_benchmark = Benchmark()
|
101 |
if uploaded_file is not None:
|
|
|
|
|
|
|
|
|
102 |
df = pd.read_csv(uploaded_file)
|
103 |
|
104 |
my_benchmark.assign_df(
|
105 |
df,
|
106 |
data_source=f"uploaded_benchmark_{datetime.now().strftime('%y%m%d')}.csv",
|
107 |
-
|
108 |
-
|
109 |
-
allbench = Benchmark()
|
110 |
-
allbench.load_local_catalog()
|
111 |
-
|
112 |
-
allbench.add_aggregate(
|
113 |
-
new_col_name="aggregate",
|
114 |
-
agg_source_name="aggregate",
|
115 |
-
scenario_whitelist=aggregate_scenario_whitelist,
|
116 |
-
min_scenario_for_models_to_appear_in_agg=1
|
117 |
-
if len(aggregate_scenario_whitelist) == 1
|
118 |
-
else 3,
|
119 |
)
|
120 |
|
121 |
uploaded_models = my_benchmark.df[
|
122 |
my_benchmark.df["source"].str.contains("uploaded")
|
123 |
]["model"].unique()
|
124 |
-
aggregate_models =
|
125 |
"model"
|
126 |
].unique()
|
127 |
|
@@ -180,8 +238,12 @@ def run_load(
|
|
180 |
aggregate_scores = pd.read_csv(
|
181 |
cache_path.replace("agreement", "aggregate_scores")
|
182 |
)
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
return agreements, aggregate_scores
|
185 |
|
186 |
else:
|
187 |
print("Cached results not found, calculating")
|
@@ -245,11 +307,12 @@ def run_load(
|
|
245 |
aggragate_scores.to_csv(
|
246 |
cache_path.replace("agreement", "aggregate_scores"), index=False
|
247 |
)
|
|
|
248 |
|
249 |
-
return agreements, aggragate_scores
|
250 |
|
251 |
|
252 |
-
agreements, aggragare_score_df = run_load(
|
253 |
aggregate_scenario_whitelist=aggregate_scenario_whitelist,
|
254 |
n_models_taken_list=n_models_taken_list,
|
255 |
model_select_strategy_list=[model_select_strategy],
|
@@ -275,17 +338,15 @@ z_scores["date"] = z_scores["source"].apply(
|
|
275 |
else x.split(".csv")[0].split("_")[-2]
|
276 |
)
|
277 |
|
|
|
278 |
|
279 |
-
|
280 |
|
281 |
-
# z_scores["scenario"] = z_scores["scenario"].apply(lambda x: get_nice_benchmark_name(x))
|
282 |
-
z_scores["date"] = pd.to_datetime("20" + z_scores["date"]).dt.date
|
283 |
-
# , format="%y%m%d"
|
284 |
data = (
|
285 |
z_scores.rename(
|
286 |
columns={
|
287 |
"scenario": "Benchmark",
|
288 |
-
"z_score":
|
289 |
"corr_with_agg": corr_name,
|
290 |
"p_value_of_corr_with_agg": "p-value of Corr.",
|
291 |
# "n_models_of_corr_with_agg": "# Models Used",
|
@@ -293,7 +354,7 @@ data = (
|
|
293 |
"date": "Snapshot Date",
|
294 |
}
|
295 |
)
|
296 |
-
.sort_values(
|
297 |
.reset_index(drop=True)
|
298 |
)
|
299 |
|
@@ -308,10 +369,10 @@ def highlight_uploaded_benchmark(row):
|
|
308 |
|
309 |
styled_data = (
|
310 |
data.style.background_gradient(
|
311 |
-
subset=[
|
312 |
cmap="RdYlGn",
|
313 |
-
vmin=-data[
|
314 |
-
vmax=data[
|
315 |
)
|
316 |
.apply(highlight_uploaded_benchmark, axis=1)
|
317 |
.background_gradient(
|
@@ -320,17 +381,19 @@ styled_data = (
|
|
320 |
vmin=0.1,
|
321 |
vmax=1,
|
322 |
)
|
323 |
-
.format(subset=[
|
324 |
.set_properties(**{"text-align": "center"})
|
325 |
)
|
326 |
|
327 |
cols_used = [
|
328 |
"Benchmark",
|
329 |
-
|
330 |
corr_name,
|
331 |
"p-value of Corr.",
|
332 |
"Snapshot Date",
|
333 |
]
|
|
|
|
|
334 |
st.dataframe(
|
335 |
data=styled_data,
|
336 |
column_order=cols_used,
|
@@ -348,7 +411,8 @@ aggragare_score_df.rename(
|
|
348 |
},
|
349 |
inplace=True,
|
350 |
)
|
351 |
-
|
|
|
352 |
st.dataframe(
|
353 |
data=aggragare_score_df,
|
354 |
hide_index=True,
|
@@ -632,6 +696,52 @@ with st.expander(label="Citations"):
|
|
632 |
"""
|
633 |
)
|
634 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
635 |
st.markdown(
|
636 |
"BenchBench-Leaderboard complements our study, where we analyzed over 40 prominent benchmarks and introduced standardized practices to enhance the robustness and validity of benchmark evaluations through the [BenchBench Python package](#). "
|
637 |
"The BenchBench-Leaderboard serves as a dynamic platform for benchmark comparison and is an essential tool for researchers and practitioners in the language model field aiming to select and utilize benchmarks effectively. "
|
@@ -648,14 +758,6 @@ st.write(r"""
|
|
648 |
""")
|
649 |
|
650 |
|
651 |
-
benchmarks = data["Benchmark"].unique().tolist()
|
652 |
-
plotted_scenario = st.selectbox(
|
653 |
-
"Choose Benchmark to plot",
|
654 |
-
benchmarks,
|
655 |
-
index=benchmarks.index("LMSys Arena"),
|
656 |
-
)
|
657 |
-
|
658 |
-
|
659 |
fig = px.histogram(
|
660 |
data.query("Benchmark!=@plotted_scenario"), x=corr_name, nbins=len(data) - 1
|
661 |
)
|
|
|
8 |
from datetime import datetime
|
9 |
|
10 |
|
11 |
+
st.set_page_config(
|
12 |
+
page_title="BenchBench",
|
13 |
+
page_icon="ποΈββοΈ",
|
14 |
+
layout="wide",
|
15 |
+
initial_sidebar_state="auto",
|
16 |
+
menu_items=None,
|
17 |
+
)
|
18 |
+
|
19 |
+
# # Inject custom CSS to set the width of the sidebar
|
20 |
+
# st.markdown(
|
21 |
+
# """
|
22 |
+
# <style>
|
23 |
+
# section[data-testid="stSidebar"] {
|
24 |
+
# width: 200px !important; # Set the width to your desired value
|
25 |
+
# }
|
26 |
+
# </style>
|
27 |
+
# """,
|
28 |
+
# unsafe_allow_html=True,
|
29 |
+
# )
|
30 |
+
|
31 |
holistic_scenarios = [
|
32 |
"Helm Lite",
|
33 |
"HF OpenLLM v2",
|
|
|
41 |
|
42 |
|
43 |
st.markdown(
|
44 |
+
"""
|
45 |
+
<h1 style='text-align: center; color: black;'>ποΈββοΈ BenchBench Leaderboard ποΈββοΈ</h1>
|
46 |
+
""",
|
47 |
unsafe_allow_html=True,
|
48 |
)
|
49 |
|
50 |
+
st.divider()
|
51 |
+
|
52 |
+
st.markdown(
|
53 |
+
"""
|
54 |
+
The BenchBench leaderboard ranks benchmarks based on their agreement with the *Aggregate Benchmark* β a comprehensive, combined measure of existing benchmark results.
|
55 |
+
\n
|
56 |
+
To achive it, we scraped results from multiple benchmarks (citations below) to allow for obtaining benchmark agreement results with a wide range of benchmark using a large set of models.
|
57 |
+
\n
|
58 |
+
BenchBench is for you if:
|
59 |
+
"""
|
60 |
+
)
|
61 |
+
|
62 |
st.markdown(
|
63 |
"""
|
64 |
+
- **You have a new benchmark**: Show that it agrees/disagrees with known benchmarks.
|
65 |
+
- **You are looking for a benchmark to run/trust**: Find an efficient/private/preferble alternative.
|
66 |
+
"""
|
67 |
+
)
|
68 |
+
|
69 |
+
st.markdown(
|
70 |
+
"""
|
71 |
+
In our work -- [Benchmark Agreement Testing Done Right](https://arxiv.org/abs/2407.13696),
|
72 |
+
we standardize BAT and show the importance of its configurations, notably,
|
73 |
+
the benchmarks we compare to, and the models we use to compare with, check it out int he sidebar.
|
74 |
+
\n
|
75 |
+
We show that agreements are best reporesented with the Z Score, the relative agreement of each benchmark to the Aggragate benchmark, as presented below.
|
76 |
"""
|
77 |
)
|
78 |
|
|
|
82 |
all_scenarios_for_aggragate.df["scenario"].unique().tolist()
|
83 |
)
|
84 |
|
85 |
+
with st.sidebar:
|
86 |
+
st.markdown("""# Configurations""")
|
87 |
|
88 |
+
# with st.expander("Leaderboard configurations (defaults are great BTW)", icon="βοΈ"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
with st.form("my_form_1"):
|
90 |
+
aggragate_scenarios = st.multiselect(
|
91 |
+
"Aggregate Benchmark",
|
92 |
+
all_scenarios_for_aggragate,
|
93 |
+
holistic_scenarios,
|
94 |
+
)
|
95 |
+
|
96 |
corr_type = st.selectbox(
|
97 |
+
label="Correlation type", options=["kendall", "pearson"], index=0
|
98 |
)
|
99 |
|
100 |
aggregate_scenario_whitelist = aggragate_scenarios
|
|
|
105 |
# ]
|
106 |
|
107 |
model_select_strategy = st.selectbox(
|
108 |
+
label="Model Select strategy",
|
109 |
options=["random", "top_aggregate", "somewhere_aggregate"],
|
110 |
index=0,
|
111 |
)
|
112 |
|
113 |
n_models_taken_list = st.slider(
|
114 |
+
label="Minimal number of models to use",
|
115 |
min_value=3,
|
116 |
max_value=15,
|
117 |
value=8,
|
|
|
119 |
|
120 |
n_models_taken_list = [n_models_taken_list]
|
121 |
|
122 |
+
n_exps = 5
|
123 |
|
124 |
submitted = st.form_submit_button(label="Run BAT")
|
125 |
|
126 |
+
|
127 |
with st.expander("Add your benchmarks here!", icon="π₯"):
|
128 |
+
aggbench = Benchmark()
|
129 |
+
aggbench.load_local_catalog()
|
130 |
+
|
131 |
+
aggbench.add_aggregate(
|
132 |
+
new_col_name="aggregate",
|
133 |
+
agg_source_name="aggregate",
|
134 |
+
scenario_whitelist=aggregate_scenario_whitelist,
|
135 |
+
min_scenario_for_models_to_appear_in_agg=1
|
136 |
+
if len(aggregate_scenario_whitelist) == 1
|
137 |
+
else 3,
|
138 |
+
)
|
139 |
+
|
140 |
+
agg_models = (
|
141 |
+
aggbench.df.query('scenario=="aggregate"').sample(n=10)["model"].tolist()
|
142 |
+
)
|
143 |
+
|
144 |
+
st.markdown(
|
145 |
+
"Adding your benchmark is as simple as uploading a csv with the following format, one column indicates the model and the other the benchmark scores."
|
146 |
+
)
|
147 |
+
|
148 |
+
st.dataframe(
|
149 |
+
pd.read_csv("assets/mybench_240901.csv"),
|
150 |
+
use_container_width=True,
|
151 |
+
hide_index=True,
|
152 |
+
height=200,
|
153 |
+
)
|
154 |
+
|
155 |
+
st.markdown(
|
156 |
+
"Not sure, what models you should run your benchmark on?" "\ntry these:"
|
157 |
)
|
158 |
|
159 |
+
st.code(agg_models)
|
160 |
+
|
161 |
+
st.markdown("Got the data? Upload it here π:")
|
162 |
+
|
163 |
+
uploaded_file = st.file_uploader("Add your benchmark as a CSV")
|
164 |
+
|
165 |
my_benchmark = Benchmark()
|
166 |
if uploaded_file is not None:
|
167 |
+
st.markdown(
|
168 |
+
"Your benchmark has been uploaded, BAT results will soon be caluclated... check out its results here: [Benchmark BAT Report Card](#benchmark-report-card)"
|
169 |
+
)
|
170 |
+
|
171 |
df = pd.read_csv(uploaded_file)
|
172 |
|
173 |
my_benchmark.assign_df(
|
174 |
df,
|
175 |
data_source=f"uploaded_benchmark_{datetime.now().strftime('%y%m%d')}.csv",
|
176 |
+
normalized_names=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
)
|
178 |
|
179 |
uploaded_models = my_benchmark.df[
|
180 |
my_benchmark.df["source"].str.contains("uploaded")
|
181 |
]["model"].unique()
|
182 |
+
aggregate_models = aggbench.df[aggbench.df["source"].str.contains("aggregate")][
|
183 |
"model"
|
184 |
].unique()
|
185 |
|
|
|
238 |
aggregate_scores = pd.read_csv(
|
239 |
cache_path.replace("agreement", "aggregate_scores")
|
240 |
)
|
241 |
+
allbench = Benchmark(
|
242 |
+
pd.read_csv(cache_path.replace("agreement", "allbench")),
|
243 |
+
normalized_names=True,
|
244 |
+
)
|
245 |
|
246 |
+
return agreements, aggregate_scores, allbench
|
247 |
|
248 |
else:
|
249 |
print("Cached results not found, calculating")
|
|
|
307 |
aggragate_scores.to_csv(
|
308 |
cache_path.replace("agreement", "aggregate_scores"), index=False
|
309 |
)
|
310 |
+
allbench.df.to_csv(cache_path.replace("agreement", "allbench"), index=False)
|
311 |
|
312 |
+
return agreements, aggragate_scores, allbench
|
313 |
|
314 |
|
315 |
+
agreements, aggragare_score_df, allbench = run_load(
|
316 |
aggregate_scenario_whitelist=aggregate_scenario_whitelist,
|
317 |
n_models_taken_list=n_models_taken_list,
|
318 |
model_select_strategy_list=[model_select_strategy],
|
|
|
338 |
else x.split(".csv")[0].split("_")[-2]
|
339 |
)
|
340 |
|
341 |
+
z_scores["date"] = pd.to_datetime("20" + z_scores["date"]).dt.date
|
342 |
|
343 |
+
z_score_name = "Relative agreement (Z Score)"
|
344 |
|
|
|
|
|
|
|
345 |
data = (
|
346 |
z_scores.rename(
|
347 |
columns={
|
348 |
"scenario": "Benchmark",
|
349 |
+
"z_score": z_score_name,
|
350 |
"corr_with_agg": corr_name,
|
351 |
"p_value_of_corr_with_agg": "p-value of Corr.",
|
352 |
# "n_models_of_corr_with_agg": "# Models Used",
|
|
|
354 |
"date": "Snapshot Date",
|
355 |
}
|
356 |
)
|
357 |
+
.sort_values(z_score_name, ascending=False)
|
358 |
.reset_index(drop=True)
|
359 |
)
|
360 |
|
|
|
369 |
|
370 |
styled_data = (
|
371 |
data.style.background_gradient(
|
372 |
+
subset=[z_score_name],
|
373 |
cmap="RdYlGn",
|
374 |
+
vmin=-data[z_score_name].abs().max(),
|
375 |
+
vmax=data[z_score_name].abs().max(),
|
376 |
)
|
377 |
.apply(highlight_uploaded_benchmark, axis=1)
|
378 |
.background_gradient(
|
|
|
381 |
vmin=0.1,
|
382 |
vmax=1,
|
383 |
)
|
384 |
+
.format(subset=[z_score_name, corr_name, "p-value of Corr."], formatter="{:.2}")
|
385 |
.set_properties(**{"text-align": "center"})
|
386 |
)
|
387 |
|
388 |
cols_used = [
|
389 |
"Benchmark",
|
390 |
+
z_score_name,
|
391 |
corr_name,
|
392 |
"p-value of Corr.",
|
393 |
"Snapshot Date",
|
394 |
]
|
395 |
+
|
396 |
+
|
397 |
st.dataframe(
|
398 |
data=styled_data,
|
399 |
column_order=cols_used,
|
|
|
411 |
},
|
412 |
inplace=True,
|
413 |
)
|
414 |
+
|
415 |
+
with st.expander(label="Aggragate Benchmark scores"):
|
416 |
st.dataframe(
|
417 |
data=aggragare_score_df,
|
418 |
hide_index=True,
|
|
|
696 |
"""
|
697 |
)
|
698 |
|
699 |
+
|
700 |
+
st.subheader("Benchmark Report Card")
|
701 |
+
|
702 |
+
|
703 |
+
benchmarks = allbench.df["scenario"].unique().tolist()
|
704 |
+
index_to_use = 0
|
705 |
+
if not my_benchmark.is_empty:
|
706 |
+
index_to_use = benchmarks.index(my_benchmark.df["scenario"].unique()[0])
|
707 |
+
|
708 |
+
plotted_scenario = st.selectbox(
|
709 |
+
"Choose Benchmark to plot",
|
710 |
+
benchmarks,
|
711 |
+
index=index_to_use,
|
712 |
+
)
|
713 |
+
|
714 |
+
col1, col2, col3 = st.columns(3)
|
715 |
+
cur_data = data.query(f"Benchmark=='{plotted_scenario}'")
|
716 |
+
col1.metric("Relative agreement", cur_data["Relative agreement (Z Score)"])
|
717 |
+
col2.metric("Kendall Tau Corr.", cur_data["Kendall Tau Corr."])
|
718 |
+
col3.metric("p-value of Corr.", cur_data["p-value of Corr."])
|
719 |
+
|
720 |
+
cur_df = allbench.df.query(f'scenario=="aggregate" or scenario=="{plotted_scenario}"')
|
721 |
+
|
722 |
+
# Filter models that are present in both scenarios
|
723 |
+
models_in_both = cur_df.groupby("model")["scenario"].nunique().eq(2).index
|
724 |
+
|
725 |
+
# Pivot the DataFrame to have scenarios as columns
|
726 |
+
df_pivot = cur_df[cur_df["model"].isin(models_in_both)].pivot(
|
727 |
+
index="model", columns="scenario", values="score"
|
728 |
+
)
|
729 |
+
|
730 |
+
# Create the scatter plot using Plotly Express
|
731 |
+
fig = px.scatter(
|
732 |
+
df_pivot,
|
733 |
+
x=df_pivot.columns[0],
|
734 |
+
y=df_pivot.columns[1],
|
735 |
+
trendline="ols",
|
736 |
+
labels={
|
737 |
+
df_pivot.columns[0]: df_pivot.columns[0],
|
738 |
+
df_pivot.columns[1]: df_pivot.columns[1],
|
739 |
+
},
|
740 |
+
hover_name=df_pivot.index,
|
741 |
+
title="Model Scores Comparison between Scenarios",
|
742 |
+
)
|
743 |
+
st.plotly_chart(fig, use_container_width=True)
|
744 |
+
|
745 |
st.markdown(
|
746 |
"BenchBench-Leaderboard complements our study, where we analyzed over 40 prominent benchmarks and introduced standardized practices to enhance the robustness and validity of benchmark evaluations through the [BenchBench Python package](#). "
|
747 |
"The BenchBench-Leaderboard serves as a dynamic platform for benchmark comparison and is an essential tool for researchers and practitioners in the language model field aiming to select and utilize benchmarks effectively. "
|
|
|
758 |
""")
|
759 |
|
760 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
761 |
fig = px.histogram(
|
762 |
data.query("Benchmark!=@plotted_scenario"), x=corr_name, nbins=len(data) - 1
|
763 |
)
|