Spaces:
Running
Running
Yotam-Perlitz
commited on
Commit
β’
1e20a46
1
Parent(s):
3ce2cf9
update example file
Browse filesSigned-off-by: Yotam-Perlitz <y.perlitz@ibm.com>
- app.py +84 -274
- assets/{mybench.csv β mybench_240901.csv} +0 -0
app.py
CHANGED
@@ -7,221 +7,15 @@ import streamlit as st
|
|
7 |
from bat import Benchmark, Config, Reporter, Tester
|
8 |
|
9 |
|
10 |
-
def get_nice_benchmark_name(bench_name):
|
11 |
-
prettified_names = {
|
12 |
-
"holmes": "Holmes",
|
13 |
-
"helm_lite_narrativeqa": "Helm Lite NarrativeQA",
|
14 |
-
"helm_lite_naturalquestionsopen": "Helm Lite NaturalQuestionsOpen",
|
15 |
-
"helm_lite_naturalquestionsclosed": "Helm Lite NaturalQuestionsClosed",
|
16 |
-
"helm_lite_openbookqa": "Helm Lite OpenBookQA",
|
17 |
-
"helm_lite_mmlu": "Helm Lite MMLU",
|
18 |
-
"helm_lite_math_equivalentcot": "Helm Lite MathEquivalentCOT",
|
19 |
-
"helm_lite_gsm8k": "Helm Lite GSM8K",
|
20 |
-
"helm_lite_legalbench": "Helm Lite LegalBench",
|
21 |
-
"helm_lite_medqa": "Helm Lite MedQA",
|
22 |
-
"helm_lite_wmt2014": "Helm Lite WMT2014",
|
23 |
-
"hfv2_bbh": "HFv2 BBH",
|
24 |
-
"hfv2_bbh_raw": "HFv2 BBH Raw",
|
25 |
-
"hfv2_gpqa": "HFv2 GPQA",
|
26 |
-
"hfv2_ifeval": "HFv2 IFEval",
|
27 |
-
"hfv2_math_lvl_5": "HFv2 Math Level 5",
|
28 |
-
"hfv2_mmlu_pro": "HFv2 MMLU Pro",
|
29 |
-
"hfv2_musr": "HFv2 MuSR",
|
30 |
-
"oc_mmlu": "OpenCompass MMLU",
|
31 |
-
"oc_mmlu_pro": "OpenCompass MMLU Pro",
|
32 |
-
"oc_cmmlu": "OpenCompass CMMLU",
|
33 |
-
"oc_bbh": "OpenCompass BBH",
|
34 |
-
"oc_gqpa_dimand": "OpenCompass GQPA-Dimand",
|
35 |
-
"oc_humaneval": "OpenCompass HumanEval",
|
36 |
-
"oc_ifeval": "OpenCompass IFEval",
|
37 |
-
"helm_mmlu": "Helm MMLU",
|
38 |
-
"helm_boolq": "Helm BoolQ",
|
39 |
-
"helm_narrativeqa": "Helm NarrativeQA",
|
40 |
-
"helm_naturalquestionsclosed": "Helm NaturalQuestionsClosed",
|
41 |
-
"helm_naturalquestionsopen": "Helm NaturalQuestionsOpen",
|
42 |
-
"helm_quac": "Helm QuAC",
|
43 |
-
"helm_openbookqa": "Helm OpenBookQA",
|
44 |
-
"helm_imdb": "Helm IMDB",
|
45 |
-
"helm_civilcomments": "Helm CivilComments",
|
46 |
-
"helm_raft": "Helm RAFT",
|
47 |
-
"mmlu_pro": "MMLU Pro",
|
48 |
-
"mixeval_triviaqa": "MixEval TriviaQA",
|
49 |
-
"mixeval_mmlu": "MixEval MMLU",
|
50 |
-
"mixeval_drop": "MixEval DROP",
|
51 |
-
"mixeval_hellaswag": "MixEval HellaSwag",
|
52 |
-
"mixeval_commonsenseqa": "MixEval CommonsenseQA",
|
53 |
-
"mixeval_triviaqa_hard": "MixEval TriviaQA Hard",
|
54 |
-
"mixeval_mmlu_hard": "MixEval MMLU Hard",
|
55 |
-
"mixeval_drop_hard": "MixEval DROP Hard",
|
56 |
-
"oc_language": "OpenCompass Language",
|
57 |
-
"oc_knowledge": "OpenCompass Knowledge",
|
58 |
-
"oc_reasoning": "OpenCompass Reasoning",
|
59 |
-
"oc_math": "OpenCompass Math",
|
60 |
-
"oc_code": "OpenCompass Code",
|
61 |
-
"oc_instruct": "OpenCompass Instruction",
|
62 |
-
"oc_agent": "OpenCompass Agent",
|
63 |
-
"oc_arena": "OpenCompass Arena",
|
64 |
-
"lb_reasoning": "LiveBench Reasoning",
|
65 |
-
"lb_coding": "LiveBench Coding",
|
66 |
-
"lb_mathematics": "LiveBench Mathematics",
|
67 |
-
"lb_data_analysis": "LiveBench Data Analysis",
|
68 |
-
"lb_language": "LiveBench Language",
|
69 |
-
"lb_if": "LiveBench Instruction Following",
|
70 |
-
"wb_info_seek": "WildBench Information Seeking",
|
71 |
-
"wb_creative": "WildBench Creative",
|
72 |
-
"wb_code_debug": "WildBench Code Debugging",
|
73 |
-
"wb_math_data": "WildBench Math & Data",
|
74 |
-
"wb_reason_plan": "WildBench Reasoning & Planning",
|
75 |
-
"wb_score": "WildBench Score",
|
76 |
-
"hfv1_arc": "HFv1 ARC",
|
77 |
-
"hfv1_gsm8k": "HFv1 GSM8K",
|
78 |
-
"hfv1_hellaswag": "HFv1 HellaSwag",
|
79 |
-
"hfv1_mmlu": "HFv1 MMLU",
|
80 |
-
"hfv1_truthfulqa": "HFv1 TruthfulQA",
|
81 |
-
"hfv1_winogrande": "HFv1 Winogrande",
|
82 |
-
"biggen_grounding": "BigBench Grounding",
|
83 |
-
"biggen_instruction_following": "BigBench Instruction Following",
|
84 |
-
"biggen_planning": "BigBench Planning",
|
85 |
-
"biggen_reasoning": "BigBench Reasoning",
|
86 |
-
"biggen_refinement": "BigBench Refinement",
|
87 |
-
"biggen_safety": "BigBench Safety",
|
88 |
-
"biggen_theory_of_mind": "BigBench Theory of Mind",
|
89 |
-
"biggen_tool_usage": "BigBench Tool Usage",
|
90 |
-
"biggen_multilingual": "BigBench Multilingual",
|
91 |
-
"lb_reasoning_average": "LiveBench Reasoning Average",
|
92 |
-
"lb_coding_average": "LiveBench Coding Average",
|
93 |
-
"lb_mathematics_average": "LiveBench Mathematics Average",
|
94 |
-
"lb_data_analysis_average": "LiveBench Data Analysis Average",
|
95 |
-
"lb_language_average": "LiveBench Language Average",
|
96 |
-
"lb_if_average": "LiveBench Instruction Following Average",
|
97 |
-
"helm_lite": "Helm Lite",
|
98 |
-
"hf_open_llm_v2": "HF OpenLLM v2",
|
99 |
-
"opencompass_academic": "OpenCompass Academic",
|
100 |
-
"arena_elo": "Arena Elo",
|
101 |
-
"helm_classic": "Helm Classic",
|
102 |
-
"mixeval": "MixEval",
|
103 |
-
"mixeval_hard": "MixEval Hard",
|
104 |
-
"opencompass": "OpenCompass",
|
105 |
-
"alphacaeval_v2lc": "AlphacaEval v2lc",
|
106 |
-
"livebench_240725": "LiveBench 240725",
|
107 |
-
"wb_elo_lc": "WildBench Elo LC",
|
108 |
-
"arena_hard": "Arena Hard",
|
109 |
-
"agentbench": "AgentBench",
|
110 |
-
"hf_open_llm_v1": "HF OpenLLM v1",
|
111 |
-
"biggen": "BigBench",
|
112 |
-
"livebench_240624": "LiveBench 240624",
|
113 |
-
"mt_bench": "MT-Bench",
|
114 |
-
}
|
115 |
-
|
116 |
-
if bench_name in prettified_names:
|
117 |
-
return prettified_names[bench_name]
|
118 |
-
else:
|
119 |
-
return bench_name
|
120 |
-
|
121 |
-
|
122 |
holistic_scenarios = [
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
# "mmlu",
|
132 |
-
# "math_equivalentcot",
|
133 |
-
# "gsm8k",
|
134 |
-
# "legalbench",
|
135 |
-
# "medqa",
|
136 |
-
# "wmt2014",
|
137 |
-
# "arc_c",
|
138 |
-
# "arc_e",
|
139 |
-
# "boolq",
|
140 |
-
# "csqa",
|
141 |
-
# "hellaswag",
|
142 |
-
# "piqa",
|
143 |
-
# "siqa",
|
144 |
-
# "winogrande",
|
145 |
-
# "olmes_average",
|
146 |
-
# "bbh",
|
147 |
-
# "bbh_raw",
|
148 |
-
# "gpqa",
|
149 |
-
"hf_open_llm_v2",
|
150 |
-
# "ifeval",
|
151 |
-
# "math_lvl_5",
|
152 |
-
# "mmlu_pro",
|
153 |
-
# "musr",
|
154 |
-
"opencompass_academic",
|
155 |
-
# "oc_mmlu",
|
156 |
-
# "oc_mmlu_pro",
|
157 |
-
# "oc_cmmlu",
|
158 |
-
# "oc_bbh",
|
159 |
-
# "oc_gqpa_dimand",
|
160 |
-
# "oc_math",
|
161 |
-
# "oc_humaneval",
|
162 |
-
# "oc_ifeval",
|
163 |
-
# "helm_mmlu",
|
164 |
-
"arena_elo",
|
165 |
-
"helm_classic",
|
166 |
-
# "quac",
|
167 |
-
# "truthfulqa",
|
168 |
-
# "ms_marcoregular",
|
169 |
-
# "ms_marcotrec",
|
170 |
-
# "cnn/dailymail",
|
171 |
-
# "xsum",
|
172 |
-
# "imdb",
|
173 |
-
# "civilcomments",
|
174 |
-
# "raft",
|
175 |
-
"mixeval_hard",
|
176 |
-
"mixeval",
|
177 |
-
# "arena_elo0527",
|
178 |
-
"opencompass",
|
179 |
-
# "oc_language",
|
180 |
-
# "oc_knowledge",
|
181 |
-
# "oc_reasoning",
|
182 |
-
# "oc_code",
|
183 |
-
# "oc_instruct",
|
184 |
-
# "oc_agent",
|
185 |
-
# "oc_arena",
|
186 |
-
"alphacaeval_v2lc",
|
187 |
-
"livebench_240725",
|
188 |
-
"livebench_240624",
|
189 |
-
# "lb_reasoning",
|
190 |
-
# "lb_coding",
|
191 |
-
# "lb_mathematics",
|
192 |
-
# "lb_data_analysis",
|
193 |
-
# "lb_language",
|
194 |
-
# "lb_if",
|
195 |
-
"wb_elo_lc",
|
196 |
-
# "wb_info_seek",
|
197 |
-
# "wb_creative",
|
198 |
-
# "wb_code_debug",
|
199 |
-
# "wb_math_data",
|
200 |
-
# "wb_reason_plan",
|
201 |
-
# "wb_score",
|
202 |
-
# "boolqmixed",
|
203 |
-
"arena_hard",
|
204 |
-
"agentbench",
|
205 |
-
# "arc",
|
206 |
-
"hf_open_llm_v1",
|
207 |
-
"biggen",
|
208 |
-
# "biggen_grounding",
|
209 |
-
# "biggen_instruction_following",
|
210 |
-
# "biggen_planning",
|
211 |
-
# "biggen_reasoning",
|
212 |
-
# "biggen_refinement",
|
213 |
-
# "biggen_safety",
|
214 |
-
# "biggen_theory_of_mind",
|
215 |
-
# "biggen_tool_usage",
|
216 |
-
# "biggen_multilingual",
|
217 |
-
# "lb_global_average",
|
218 |
-
# "lb_reasoning_average",
|
219 |
-
# "lb_coding_average",
|
220 |
-
# "lb_mathematics_average",
|
221 |
-
# "lb_data_analysis_average",
|
222 |
-
# "lb_language_average",
|
223 |
-
# "lb_if_average",
|
224 |
-
]
|
225 |
]
|
226 |
|
227 |
|
@@ -245,30 +39,31 @@ all_scenarios_for_aggragate = (
|
|
245 |
st.subheader("The Leaderboard", divider=True)
|
246 |
# st.subheader("ποΈββοΈ BenchBench Leaderboard π", divider=True)
|
247 |
|
248 |
-
leftcol, rightcol = st.columns([2, 1])
|
249 |
|
250 |
-
with st.
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
)
|
262 |
|
|
|
|
|
263 |
corr_type = st.selectbox(
|
264 |
label="Select Correlation type", options=["kendall", "pearson"], index=0
|
265 |
)
|
266 |
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
272 |
|
273 |
model_select_strategy = st.selectbox(
|
274 |
label="Select strategy",
|
@@ -289,23 +84,25 @@ with st.expander("Leaderboard configurations (defaults are great BTW)", icon="
|
|
289 |
|
290 |
submitted = st.form_submit_button(label="Run BAT")
|
291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
file_name="mybench.csv",
|
298 |
-
mime="text/csv",
|
299 |
-
)
|
300 |
-
|
301 |
-
my_benchmark = Benchmark()
|
302 |
-
if uploaded_file is not None:
|
303 |
-
df = pd.read_csv(uploaded_file)
|
304 |
-
my_benchmark.assign_df(df, data_source="Uploaded Benchmark")
|
305 |
|
306 |
|
307 |
def run_load(
|
308 |
-
|
309 |
n_models_taken_list=[5],
|
310 |
model_select_strategy_list=["random"],
|
311 |
corr_types=["kendall"],
|
@@ -315,7 +112,7 @@ def run_load(
|
|
315 |
):
|
316 |
# Create a hash of the inputs to generate a unique cache file for each set of inputs
|
317 |
input_str = (
|
318 |
-
str(
|
319 |
+ str(n_models_taken_list)
|
320 |
+ str(model_select_strategy_list)
|
321 |
+ str(corr_types)
|
@@ -358,25 +155,30 @@ def run_load(
|
|
358 |
n_exps=n_exps if n_models_taken_list != [0] else 1,
|
359 |
)
|
360 |
|
361 |
-
holistic = Benchmark()
|
362 |
-
holistic.load_local_catalog()
|
363 |
-
holistic.df = holistic.df.query("scenario in @holistic_scenarios")
|
|
|
|
|
364 |
|
365 |
-
holistic.
|
366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
new_col_name="aggregate",
|
368 |
-
agg_source_name="
|
369 |
-
|
370 |
-
min_scenario_for_models_to_appear_in_agg=
|
371 |
)
|
372 |
|
373 |
-
aggragate_scores =
|
374 |
["model", "score"]
|
375 |
].sort_values(by="score", ascending=False)
|
376 |
|
377 |
-
allbench = Benchmark()
|
378 |
-
allbench.load_local_catalog()
|
379 |
-
|
380 |
# allbench.df = allbench.df[~allbench.df["source"].str.contains("livebench")]
|
381 |
|
382 |
allbench.extend(my_benchmark)
|
@@ -384,8 +186,8 @@ def run_load(
|
|
384 |
allbench.clear_repeated_scenarios()
|
385 |
|
386 |
# removing and adding the holistic scenarios
|
387 |
-
allbench.df = allbench.df.query("scenario not in @holistic_scenarios")
|
388 |
-
allbench = allbench.extend(holistic)
|
389 |
|
390 |
tester = Tester(cfg=cfg)
|
391 |
|
@@ -403,7 +205,7 @@ def run_load(
|
|
403 |
|
404 |
|
405 |
agreements, aggragare_score_df = run_load(
|
406 |
-
|
407 |
n_models_taken_list=n_models_taken_list,
|
408 |
model_select_strategy_list=[model_select_strategy],
|
409 |
corr_types=[corr_type],
|
@@ -422,12 +224,18 @@ z_scores["corr_with_agg"] = z_scores["corr_with_agg"].round(2)
|
|
422 |
z_scores["p_value_of_corr_with_agg"] = z_scores["p_value_of_corr_with_agg"].round(2)
|
423 |
# z_scores["n_models_of_corr_with_agg"] = z_scores["n_models_of_corr_with_agg"].round(1)
|
424 |
|
425 |
-
z_scores["date"] = z_scores["source"].apply(
|
|
|
|
|
|
|
|
|
426 |
|
427 |
-
# print(z_scores["scenario"].unique().tolist())
|
428 |
|
429 |
-
|
430 |
|
|
|
|
|
|
|
431 |
data = (
|
432 |
z_scores.rename(
|
433 |
columns={
|
@@ -468,24 +276,26 @@ styled_data = (
|
|
468 |
vmax=1,
|
469 |
)
|
470 |
.format(subset=["Z Score", corr_name, "p-value of Corr."], formatter="{:.2}")
|
|
|
471 |
)
|
472 |
|
473 |
-
|
474 |
-
|
|
|
|
|
|
|
|
|
|
|
475 |
st.dataframe(
|
476 |
data=styled_data,
|
477 |
-
column_order=
|
478 |
-
"Benchmark",
|
479 |
-
"Z Score",
|
480 |
-
corr_name,
|
481 |
-
"p-value of Corr.",
|
482 |
-
"Snapshot Date",
|
483 |
-
],
|
484 |
hide_index=True,
|
485 |
use_container_width=True,
|
486 |
height=500,
|
|
|
487 |
)
|
488 |
|
|
|
489 |
aggragare_score_df.rename(
|
490 |
columns={
|
491 |
"model": "Model",
|
@@ -787,7 +597,7 @@ benchmarks = data["Benchmark"].unique().tolist()
|
|
787 |
plotted_scenario = st.selectbox(
|
788 |
"Choose Benchmark to plot",
|
789 |
benchmarks,
|
790 |
-
index=benchmarks.index("Arena
|
791 |
)
|
792 |
|
793 |
|
|
|
7 |
from bat import Benchmark, Config, Reporter, Tester
|
8 |
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
holistic_scenarios = [
|
11 |
+
"Helm Lite",
|
12 |
+
"HF OpenLLM v2",
|
13 |
+
"OpenCompass Academic",
|
14 |
+
"LMSys Arena",
|
15 |
+
"Helm Classic",
|
16 |
+
"AlphacaEval v2lc",
|
17 |
+
"LiveBench 240725",
|
18 |
+
"WildBench Elo LC",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
]
|
20 |
|
21 |
|
|
|
39 |
st.subheader("The Leaderboard", divider=True)
|
40 |
# st.subheader("ποΈββοΈ BenchBench Leaderboard π", divider=True)
|
41 |
|
|
|
42 |
|
43 |
+
with st.form("my_form_0"):
|
44 |
+
# leftcol, rightcol = st.columns([5, 1])
|
45 |
+
# with leftcol:
|
46 |
+
aggragate_scenarios = st.multiselect(
|
47 |
+
"Scenarios in Aggregate (defualts are the 'Holistic' benchmarks)",
|
48 |
+
all_scenarios_for_aggragate,
|
49 |
+
holistic_scenarios,
|
50 |
+
)
|
51 |
+
# with rightcol:
|
52 |
+
# st.markdown("###")
|
53 |
+
submitted = st.form_submit_button(label="\n\nRun BAT\n\n")
|
|
|
54 |
|
55 |
+
with st.expander("Leaderboard configurations (defaults are great BTW)", icon="βοΈ"):
|
56 |
+
with st.form("my_form_1"):
|
57 |
corr_type = st.selectbox(
|
58 |
label="Select Correlation type", options=["kendall", "pearson"], index=0
|
59 |
)
|
60 |
|
61 |
+
aggragate_scenario_whitelist = aggragate_scenarios
|
62 |
+
# [
|
63 |
+
# scen
|
64 |
+
# for scen in all_scenarios_for_aggragate
|
65 |
+
# if scen not in aggragate_scenarios
|
66 |
+
# ]
|
67 |
|
68 |
model_select_strategy = st.selectbox(
|
69 |
label="Select strategy",
|
|
|
84 |
|
85 |
submitted = st.form_submit_button(label="Run BAT")
|
86 |
|
87 |
+
with st.expander("Add your benchmarks here!", icon="π₯"):
|
88 |
+
uploaded_file = st.file_uploader("Add your benchmark as a CSV")
|
89 |
+
st.download_button(
|
90 |
+
label="Download example CSV",
|
91 |
+
data=pd.read_csv("assets/mybench_240901.csv")
|
92 |
+
.to_csv(index=False)
|
93 |
+
.encode("utf-8"),
|
94 |
+
file_name="mybench_240901.csv",
|
95 |
+
mime="text/csv",
|
96 |
+
)
|
97 |
|
98 |
+
my_benchmark = Benchmark()
|
99 |
+
if uploaded_file is not None:
|
100 |
+
df = pd.read_csv(uploaded_file)
|
101 |
+
my_benchmark.assign_df(df, data_source="Uploaded Benchmark")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
|
104 |
def run_load(
|
105 |
+
aggregate_scenario_whitelist,
|
106 |
n_models_taken_list=[5],
|
107 |
model_select_strategy_list=["random"],
|
108 |
corr_types=["kendall"],
|
|
|
112 |
):
|
113 |
# Create a hash of the inputs to generate a unique cache file for each set of inputs
|
114 |
input_str = (
|
115 |
+
str(aggregate_scenario_whitelist)
|
116 |
+ str(n_models_taken_list)
|
117 |
+ str(model_select_strategy_list)
|
118 |
+ str(corr_types)
|
|
|
155 |
n_exps=n_exps if n_models_taken_list != [0] else 1,
|
156 |
)
|
157 |
|
158 |
+
# holistic = Benchmark()
|
159 |
+
# holistic.load_local_catalog()
|
160 |
+
# holistic.df = holistic.df.query("scenario in @holistic_scenarios")
|
161 |
+
|
162 |
+
# holistic.clear_repeated_scenarios()
|
163 |
|
164 |
+
# aggragate_scores = holistic.df.query('scenario=="aggregate"')[
|
165 |
+
# ["model", "score"]
|
166 |
+
# ].sort_values(by="score", ascending=False)
|
167 |
+
|
168 |
+
allbench = Benchmark()
|
169 |
+
allbench.load_local_catalog()
|
170 |
+
|
171 |
+
allbench.add_aggregate(
|
172 |
new_col_name="aggregate",
|
173 |
+
agg_source_name="aggregate",
|
174 |
+
scenario_whitelist=aggregate_scenario_whitelist,
|
175 |
+
min_scenario_for_models_to_appear_in_agg=1,
|
176 |
)
|
177 |
|
178 |
+
aggragate_scores = allbench.df.query('scenario=="aggregate"')[
|
179 |
["model", "score"]
|
180 |
].sort_values(by="score", ascending=False)
|
181 |
|
|
|
|
|
|
|
182 |
# allbench.df = allbench.df[~allbench.df["source"].str.contains("livebench")]
|
183 |
|
184 |
allbench.extend(my_benchmark)
|
|
|
186 |
allbench.clear_repeated_scenarios()
|
187 |
|
188 |
# removing and adding the holistic scenarios
|
189 |
+
# allbench.df = allbench.df.query("scenario not in @holistic_scenarios")
|
190 |
+
# allbench = allbench.extend(holistic)
|
191 |
|
192 |
tester = Tester(cfg=cfg)
|
193 |
|
|
|
205 |
|
206 |
|
207 |
agreements, aggragare_score_df = run_load(
|
208 |
+
aggregate_scenario_whitelist=aggragate_scenario_whitelist,
|
209 |
n_models_taken_list=n_models_taken_list,
|
210 |
model_select_strategy_list=[model_select_strategy],
|
211 |
corr_types=[corr_type],
|
|
|
224 |
z_scores["p_value_of_corr_with_agg"] = z_scores["p_value_of_corr_with_agg"].round(2)
|
225 |
# z_scores["n_models_of_corr_with_agg"] = z_scores["n_models_of_corr_with_agg"].round(1)
|
226 |
|
227 |
+
z_scores["date"] = z_scores["source"].apply(
|
228 |
+
lambda x: x.split(".csv")[0].split("_")[-1]
|
229 |
+
if "frozen" not in x
|
230 |
+
else x.split(".csv")[0].split("_")[-2]
|
231 |
+
)
|
232 |
|
|
|
233 |
|
234 |
+
# print(z_scores["scenario"].unique().tolist())
|
235 |
|
236 |
+
# z_scores["scenario"] = z_scores["scenario"].apply(lambda x: get_nice_benchmark_name(x))
|
237 |
+
z_scores["date"] = pd.to_datetime("20" + z_scores["date"]).dt.date
|
238 |
+
# , format="%y%m%d"
|
239 |
data = (
|
240 |
z_scores.rename(
|
241 |
columns={
|
|
|
276 |
vmax=1,
|
277 |
)
|
278 |
.format(subset=["Z Score", corr_name, "p-value of Corr."], formatter="{:.2}")
|
279 |
+
.set_properties(**{"text-align": "center"})
|
280 |
)
|
281 |
|
282 |
+
cols_used = [
|
283 |
+
"Benchmark",
|
284 |
+
"Z Score",
|
285 |
+
corr_name,
|
286 |
+
"p-value of Corr.",
|
287 |
+
"Snapshot Date",
|
288 |
+
]
|
289 |
st.dataframe(
|
290 |
data=styled_data,
|
291 |
+
column_order=cols_used,
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
hide_index=True,
|
293 |
use_container_width=True,
|
294 |
height=500,
|
295 |
+
column_config={col: {"alignment": "center"} for col in cols_used},
|
296 |
)
|
297 |
|
298 |
+
|
299 |
aggragare_score_df.rename(
|
300 |
columns={
|
301 |
"model": "Model",
|
|
|
597 |
plotted_scenario = st.selectbox(
|
598 |
"Choose Benchmark to plot",
|
599 |
benchmarks,
|
600 |
+
index=benchmarks.index("LMSys Arena"),
|
601 |
)
|
602 |
|
603 |
|
assets/{mybench.csv β mybench_240901.csv}
RENAMED
File without changes
|