Spaces:
Configuration error
Configuration error
from lib.config import cfg, args | |
def run_dataset(): | |
from lib.datasets import make_data_loader | |
import tqdm | |
cfg.train.num_workers = 0 | |
data_loader = make_data_loader(cfg, is_train=False) | |
for batch in tqdm.tqdm(data_loader): | |
pass | |
def run_network(): | |
from lib.networks import make_network | |
from lib.datasets import make_data_loader | |
from lib.utils.net_utils import load_network | |
import tqdm | |
import torch | |
import time | |
network = make_network(cfg).cuda() | |
load_network(network, cfg.trained_model_dir, epoch=cfg.test.epoch) | |
network.eval() | |
data_loader = make_data_loader(cfg, is_train=False) | |
total_time = 0 | |
for batch in tqdm.tqdm(data_loader): | |
for k in batch: | |
if k != 'meta': | |
batch[k] = batch[k].cuda() | |
with torch.no_grad(): | |
torch.cuda.synchronize() | |
start = time.time() | |
network(batch) | |
torch.cuda.synchronize() | |
total_time += time.time() - start | |
print(total_time / len(data_loader)) | |
def run_evaluate(): | |
from lib.datasets import make_data_loader | |
from lib.evaluators import make_evaluator | |
import tqdm | |
import torch | |
from lib.networks import make_network | |
from lib.utils import net_utils | |
from lib.networks.renderer import make_renderer | |
cfg.perturb = 0 | |
network = make_network(cfg).cuda() | |
net_utils.load_network(network, | |
cfg.trained_model_dir, | |
resume=cfg.resume, | |
epoch=cfg.test.epoch) | |
network.train() | |
data_loader = make_data_loader(cfg, is_train=False) | |
renderer = make_renderer(cfg, network) | |
evaluator = make_evaluator(cfg) | |
for batch in tqdm.tqdm(data_loader): | |
for k in batch: | |
if k != 'meta': | |
batch[k] = batch[k].cuda() | |
with torch.no_grad(): | |
output = renderer.render(batch) | |
evaluator.evaluate(output, batch) | |
evaluator.summarize() | |
def run_visualize(): | |
from lib.networks import make_network | |
from lib.datasets import make_data_loader | |
from lib.utils.net_utils import load_network | |
from lib.utils import net_utils | |
import tqdm | |
import torch | |
from lib.visualizers import make_visualizer | |
from lib.networks.renderer import make_renderer | |
cfg.perturb = 0 | |
network = make_network(cfg).cuda() | |
load_network(network, | |
cfg.trained_model_dir, | |
resume=cfg.resume, | |
epoch=cfg.test.epoch) | |
network.train() | |
data_loader = make_data_loader(cfg, is_train=False) | |
renderer = make_renderer(cfg, network) | |
visualizer = make_visualizer(cfg) | |
for batch in tqdm.tqdm(data_loader): | |
for k in batch: | |
if k != 'meta': | |
batch[k] = batch[k].cuda() | |
with torch.no_grad(): | |
output = renderer.render(batch) | |
visualizer.visualize(output, batch) | |
def run_light_stage(): | |
from lib.utils.light_stage import ply_to_occupancy | |
ply_to_occupancy.ply_to_occupancy() | |
# ply_to_occupancy.create_voxel_off() | |
def run_evaluate_nv(): | |
from lib.datasets import make_data_loader | |
from lib.evaluators import make_evaluator | |
import tqdm | |
from lib.utils import net_utils | |
data_loader = make_data_loader(cfg, is_train=False) | |
evaluator = make_evaluator(cfg) | |
for batch in tqdm.tqdm(data_loader): | |
for k in batch: | |
if k != 'meta': | |
batch[k] = batch[k].cuda() | |
evaluator.evaluate(batch) | |
evaluator.summarize() | |
if __name__ == '__main__': | |
globals()['run_' + args.type]() | |