Spaces:
Sleeping
Sleeping
from collections import abc | |
import os | |
import torch | |
from torch.nn import functional as F | |
from torch.autograd import Function | |
# from torch.utils.cpp_extension import load | |
# | |
# module_path = os.path.dirname(__file__) | |
# ext_path = os.path.join(module_path, "_ext", 'upfirdn2d') | |
# os.makedirs(ext_path, exist_ok=True) | |
# | |
# extra_cuda_cflags = [ | |
# "-DCUDA_HAS_FP16=1", | |
# "-D__CUDA_NO_HALF_OPERATORS__", | |
# "-D__CUDA_NO_HALF_CONVERSIONS__", | |
# "-D__CUDA_NO_HALF2_OPERATORS__", | |
# ] | |
# upfirdn2d_op = load( | |
# "upfirdn2d", | |
# sources=[ | |
# os.path.join(module_path, "upfirdn2d.cpp"), | |
# os.path.join(module_path, "upfirdn2d_kernel.cu"), | |
# ], | |
# extra_cflags=["-O2"], | |
# extra_cuda_cflags=extra_cuda_cflags, | |
# build_directory=ext_path, | |
# verbose=True) | |
import upfirdn2d as upfirdn2d_op | |
class UpFirDn2dBackward(Function): | |
def forward( | |
ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size | |
): | |
up_x, up_y = up | |
down_x, down_y = down | |
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad | |
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1) | |
if not grad_output.is_contiguous(): | |
grad_output = grad_output.contiguous() | |
grad_input = upfirdn2d_op.upfirdn2d( | |
grad_output, | |
grad_kernel, | |
down_x, | |
down_y, | |
up_x, | |
up_y, | |
g_pad_x0, | |
g_pad_x1, | |
g_pad_y0, | |
g_pad_y1, | |
) | |
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3]) | |
ctx.save_for_backward(kernel) | |
pad_x0, pad_x1, pad_y0, pad_y1 = pad | |
ctx.up_x = up_x | |
ctx.up_y = up_y | |
ctx.down_x = down_x | |
ctx.down_y = down_y | |
ctx.pad_x0 = pad_x0 | |
ctx.pad_x1 = pad_x1 | |
ctx.pad_y0 = pad_y0 | |
ctx.pad_y1 = pad_y1 | |
ctx.in_size = in_size | |
ctx.out_size = out_size | |
return grad_input | |
def backward(ctx, gradgrad_input): | |
kernel, = ctx.saved_tensors | |
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1) | |
gradgrad_out = upfirdn2d_op.upfirdn2d( | |
gradgrad_input, | |
kernel, | |
ctx.up_x, | |
ctx.up_y, | |
ctx.down_x, | |
ctx.down_y, | |
ctx.pad_x0, | |
ctx.pad_x1, | |
ctx.pad_y0, | |
ctx.pad_y1, | |
) | |
# gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3]) | |
gradgrad_out = gradgrad_out.view( | |
ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1] | |
) | |
return gradgrad_out, None, None, None, None, None, None, None, None | |
class UpFirDn2d(Function): | |
def forward(ctx, input, kernel, up, down, pad): | |
up_x, up_y = up | |
down_x, down_y = down | |
pad_x0, pad_x1, pad_y0, pad_y1 = pad | |
kernel_h, kernel_w = kernel.shape | |
batch, channel, in_h, in_w = input.shape | |
ctx.in_size = input.shape | |
input = input.reshape(-1, in_h, in_w, 1) | |
if not input.is_contiguous(): #此处主要是处理偶尔出现的reshape之后也不contiguous的问题 | |
input = input.contiguous() | |
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) | |
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y | |
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x | |
ctx.out_size = (out_h, out_w) | |
ctx.up = (up_x, up_y) | |
ctx.down = (down_x, down_y) | |
ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1) | |
g_pad_x0 = kernel_w - pad_x0 - 1 | |
g_pad_y0 = kernel_h - pad_y0 - 1 | |
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1 | |
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1 | |
ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1) | |
out = upfirdn2d_op.upfirdn2d( | |
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 | |
) | |
# out = out.view(major, out_h, out_w, minor) | |
out = out.view(-1, channel, out_h, out_w) | |
return out | |
def backward(ctx, grad_output): | |
kernel, grad_kernel = ctx.saved_tensors | |
grad_input = None | |
if ctx.needs_input_grad[0]: | |
grad_input = UpFirDn2dBackward.apply( | |
grad_output, | |
kernel, | |
grad_kernel, | |
ctx.up, | |
ctx.down, | |
ctx.pad, | |
ctx.g_pad, | |
ctx.in_size, | |
ctx.out_size, | |
) | |
return grad_input, None, None, None, None | |
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): | |
if not isinstance(up, abc.Iterable): | |
up = (up, up) | |
if not isinstance(down, abc.Iterable): | |
down = (down, down) | |
if len(pad) == 2: | |
pad = (pad[0], pad[1], pad[0], pad[1]) | |
if input.device.type == "cpu": | |
out = upfirdn2d_native(input, kernel, *up, *down, *pad) | |
else: | |
out = UpFirDn2d.apply(input, kernel, up, down, pad) | |
return out | |
def upfirdn2d_native( | |
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 | |
): | |
_, channel, in_h, in_w = input.shape | |
input = input.reshape(-1, in_h, in_w, 1) | |
_, in_h, in_w, minor = input.shape | |
kernel_h, kernel_w = kernel.shape | |
out = input.view(-1, in_h, 1, in_w, 1, minor) | |
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) | |
out = out.view(-1, in_h * up_y, in_w * up_x, minor) | |
out = F.pad( | |
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)] | |
) | |
out = out[ | |
:, | |
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), | |
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), | |
:, | |
] | |
out = out.permute(0, 3, 1, 2) | |
out = out.reshape( | |
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1] | |
) | |
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) | |
out = F.conv2d(out, w) | |
out = out.reshape( | |
-1, | |
minor, | |
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, | |
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, | |
) | |
out = out.permute(0, 2, 3, 1) | |
out = out[:, ::down_y, ::down_x, :] | |
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y | |
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x | |
return out.view(-1, channel, out_h, out_w) | |