peinan commited on
Commit
90065a6
·
1 Parent(s): 6932488

add PDF reader component, avatar, and clear button

Browse files
data/avatar-bot.png ADDED
data/avatar-user.png ADDED
data/sample.txt DELETED
@@ -1 +0,0 @@
1
- hello
 
 
pyproject.toml CHANGED
@@ -9,6 +9,7 @@ dependencies = [
9
  "gradio>=4.19.2",
10
  "langchain>=0.1.9",
11
  "gradio-pdf>=0.0.5",
 
12
  ]
13
  readme = "README.md"
14
  requires-python = ">= 3.8"
 
9
  "gradio>=4.19.2",
10
  "langchain>=0.1.9",
11
  "gradio-pdf>=0.0.5",
12
+ "loguru>=0.7.2",
13
  ]
14
  readme = "README.md"
15
  requires-python = ">= 3.8"
requirements-dev.lock CHANGED
@@ -122,6 +122,8 @@ langsmith==0.1.8
122
  # via langchain
123
  # via langchain-community
124
  # via langchain-core
 
 
125
  markdown-it-py==3.0.0
126
  # via rich
127
  markupsafe==2.1.5
 
122
  # via langchain
123
  # via langchain-community
124
  # via langchain-core
125
+ loguru==0.7.2
126
+ # via pdfchat
127
  markdown-it-py==3.0.0
128
  # via rich
129
  markupsafe==2.1.5
requirements.lock CHANGED
@@ -109,6 +109,8 @@ langsmith==0.1.8
109
  # via langchain
110
  # via langchain-community
111
  # via langchain-core
 
 
112
  markdown-it-py==3.0.0
113
  # via rich
114
  markupsafe==2.1.5
 
109
  # via langchain
110
  # via langchain-community
111
  # via langchain-core
112
+ loguru==0.7.2
113
+ # via pdfchat
114
  markdown-it-py==3.0.0
115
  # via rich
116
  markupsafe==2.1.5
src/pdfchat/app.py CHANGED
@@ -1,9 +1,9 @@
1
- import time
2
  from dataclasses import dataclass
3
  from pathlib import Path
4
 
5
  import gradio as gr
6
- from icecream import ic
 
7
 
8
  MODEL_CALM2 = "cyberagent/calm2"
9
 
@@ -56,31 +56,23 @@ def bot(history: ChatHistory, query: str, file_path: str) -> ChatHistory:
56
  return history
57
  document = open_file(file_path)
58
  history.add_chat(Chat(query=query, response=document))
59
- ic(history)
60
 
61
  # TODO: use streaming inference
62
  return history
63
 
64
 
65
  with gr.Blocks() as app:
 
66
  with gr.Row():
67
- with gr.Column(scale=0.4):
68
  model_name = gr.Dropdown(
69
  choices=[MODEL_CALM2],
70
  value=MODEL_CALM2,
71
  label="Model",
72
  )
73
- file_box = gr.File(
74
  label="Document",
75
- file_types=[".pdf", ".txt"],
76
- file_count="single",
77
- container=False,
78
- )
79
- gr.Examples(
80
- examples=[["data/sample.txt"], ["data/sample.pdf"]],
81
- inputs=[file_box],
82
- outputs=[],
83
- fn=lambda model_name, document: None,
84
  )
85
  with gr.Accordion("Parameters", open=False):
86
  temperature_slider = gr.Slider(
@@ -91,24 +83,43 @@ with gr.Blocks() as app:
91
  minimum=0.1, maximum=1.0, value=0.5, label="Top P"
92
  )
93
  top_p_slider.change(lambda x: x, [top_p_slider])
94
- with gr.Column(scale=0.6):
95
  chatbot = gr.Chatbot(
96
  bubble_full_width=False,
97
  height=650,
 
 
 
 
 
 
 
 
 
 
 
 
98
  )
99
- ic(chatbot)
100
  with gr.Row():
101
- text_box = gr.Textbox(
102
- scale=0.9,
103
- show_label=False,
104
- placeholder="Type your message here",
105
- container=False,
106
  )
107
- submit_button = gr.Button("Submit", scale=0.1, variant="primary")
108
  submit = submit_button.click(
109
  fn=bot,
110
  inputs=[chatbot, text_box, file_box],
111
  outputs=chatbot,
112
  )
 
 
 
 
 
 
 
 
 
 
 
113
 
114
  app.queue().launch(debug=True)
 
 
1
  from dataclasses import dataclass
2
  from pathlib import Path
3
 
4
  import gradio as gr
5
+ from gradio_pdf import PDF
6
+ from loguru import logger
7
 
8
  MODEL_CALM2 = "cyberagent/calm2"
9
 
 
56
  return history
57
  document = open_file(file_path)
58
  history.add_chat(Chat(query=query, response=document))
59
+ logger.info(history)
60
 
61
  # TODO: use streaming inference
62
  return history
63
 
64
 
65
  with gr.Blocks() as app:
66
+ gr.Markdown("# Chat with PDF")
67
  with gr.Row():
68
+ with gr.Column(scale=35):
69
  model_name = gr.Dropdown(
70
  choices=[MODEL_CALM2],
71
  value=MODEL_CALM2,
72
  label="Model",
73
  )
74
+ file_box = PDF(
75
  label="Document",
 
 
 
 
 
 
 
 
 
76
  )
77
  with gr.Accordion("Parameters", open=False):
78
  temperature_slider = gr.Slider(
 
83
  minimum=0.1, maximum=1.0, value=0.5, label="Top P"
84
  )
85
  top_p_slider.change(lambda x: x, [top_p_slider])
86
+ with gr.Column(scale=65):
87
  chatbot = gr.Chatbot(
88
  bubble_full_width=False,
89
  height=650,
90
+ show_copy_button=True,
91
+ avatar_images=(
92
+ Path("data/avatar-user.png"),
93
+ Path("data/avatar-bot.png"),
94
+ ),
95
+ )
96
+ text_box = gr.Textbox(
97
+ lines=2,
98
+ label="Chat message",
99
+ show_label=False,
100
+ placeholder="Type your message here",
101
+ container=False,
102
  )
 
103
  with gr.Row():
104
+ clear_button = gr.ClearButton(
105
+ [text_box, chatbot, file_box], variant="secondary", size="sm"
 
 
 
106
  )
107
+ submit_button = gr.Button("Submit", variant="primary", size="sm")
108
  submit = submit_button.click(
109
  fn=bot,
110
  inputs=[chatbot, text_box, file_box],
111
  outputs=chatbot,
112
  )
113
+ examples = gr.Examples(
114
+ examples=[
115
+ [
116
+ "data/sample.pdf",
117
+ "胃がん手術の説明書の要点を箇条書きで要約してください",
118
+ ]
119
+ ],
120
+ inputs=[file_box, text_box],
121
+ outputs=[],
122
+ fn=lambda model_name, document: None,
123
+ )
124
 
125
  app.queue().launch(debug=True)