pedropauletti commited on
Commit
1e40d63
·
1 Parent(s): 23b1e7c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +105 -0
app.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import time
4
+ from haystack.document_stores import InMemoryDocumentStore
5
+ from haystack.nodes import EmbeddingRetriever
6
+ import pandas as pd
7
+
8
+
9
+ def load_qa_model():
10
+ document_store = InMemoryDocumentStore()
11
+ retriever = EmbeddingRetriever(
12
+ document_store=document_store,
13
+ embedding_model="sentence-transformers/all-MiniLM-L6-v2",
14
+ use_gpu=False,
15
+ scale_score=False,
16
+ )
17
+ # Get dataframe with columns "question", "answer" and some custom metadata
18
+ df = pd.read_csv('/content/social-faq.csv', on_bad_lines='skip', delimiter=';')
19
+ # Minimal cleaning
20
+ df.fillna(value="", inplace=True)
21
+ df["question"] = df["question"].apply(lambda x: x.strip())
22
+
23
+ questions = list(df["question"].values)
24
+ df["embedding"] = retriever.embed_queries(queries=questions).tolist()
25
+ df = df.rename(columns={"question": "content"})
26
+
27
+ # Convert Dataframe to list of dicts and index them in our DocumentStore
28
+ docs_to_index = df.to_dict(orient="records")
29
+ document_store.write_documents(docs_to_index)
30
+
31
+ return retriever
32
+
33
+ def add_text(history, text):
34
+ history = history + [(text, None)]
35
+ return history, gr.Textbox(value="", interactive=False)
36
+
37
+
38
+ def add_file(history, file):
39
+ history = history + [((file.name,), None)]
40
+ return history
41
+
42
+
43
+ def bot(history):
44
+ print(history)
45
+ # response = "**That's cool!**"
46
+ history[-1][1] = ""
47
+
48
+ global retriever
49
+ response = get_answers(retriever, history[0][0])
50
+
51
+ for character in response:
52
+ history[-1][1] += character
53
+ time.sleep(0.01)
54
+ yield history
55
+
56
+
57
+
58
+ def get_answers(retriever, query):
59
+ from haystack.pipelines import FAQPipeline
60
+
61
+ pipe = FAQPipeline(retriever=retriever)
62
+
63
+ from haystack.utils import print_answers
64
+
65
+ # Run any question and change top_k to see more or less answers
66
+ prediction = pipe.run(query=query, params={"Retriever": {"top_k": 1}})
67
+
68
+ answers = prediction['answers']
69
+
70
+ if answers:
71
+ return answers[0].answer
72
+ else:
73
+ return "I don't have an answer to that question"
74
+
75
+
76
+
77
+
78
+ retriever = load_qa_model()
79
+
80
+
81
+ with gr.Blocks() as demo:
82
+ chatbot = gr.Chatbot(
83
+ [],
84
+ elem_id="chatbot",
85
+ bubble_full_width=False,
86
+ # avatar_images=(None, "/content/avatar.png"),
87
+ )
88
+
89
+ with gr.Row():
90
+ txt = gr.Textbox(
91
+ scale=4,
92
+ show_label=False,
93
+ placeholder="Enter text and press enter",
94
+ container=False,
95
+ )
96
+ inputRecord = gr.Audio(label="Record a question", source="microphone", type="filepath")
97
+ audioOutput = gr.Audio(label="Listen the answer", interactive=False)
98
+
99
+ txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
100
+ bot, chatbot, chatbot
101
+ )
102
+ txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
103
+
104
+ demo.queue()
105
+ demo.launch()