peace4ever commited on
Commit
b89d49a
1 Parent(s): 10bd220

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -16
app.py CHANGED
@@ -3,27 +3,52 @@ import streamlit as st
3
  import torch as torch
4
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
5
 
6
- model_name = "peace4ever/roberta-large-finetuned-mongolian_v4"
7
- tokenizer = AutoTokenizer.from_pretrained(model_name)
8
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
 
10
- text = st.text_area("Өгүүлбэр оруулна уу?")
11
- encoded_input = tokenizer(text, return_tensors="pt")
12
- output = model(**encoded_input)
13
 
14
- label_map = {"positive": 0, "negative": 1, "neutral": 2}
 
 
15
 
16
- # Update the model configuration with custom labels
17
- config = AutoConfig.from_pretrained(model_name)
18
- config.label2id = {"positive": 0, "negative": 1, "neutral": 2}
19
- config.id2label = {0: "positive", 1: "negative", 2: "neutral"}
20
- config.save_pretrained(model_name)
21
 
22
- predicted_label_id = torch.argmax(output.logits, dim=1).item()
23
- id2label = model.config.id2label
24
- predicted_label = id2label[predicted_label_id]
25
 
26
- print("Predicted Class:", predicted_label)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  # st.json(predicted_label)
29
 
 
3
  import torch as torch
4
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
5
 
 
 
 
6
 
7
+ import requests
8
+ from transformers import pipeline
 
9
 
10
+ # Load the model using its ID or name
11
+ model_id_or_name = "peace4ever/roberta-large-finetuned-mongolian_v4" # Update with your model ID or name
12
+ classifier = pipeline("sentiment-analysis", model=model_id_or_name)
13
 
14
+ # Example usage
15
+ result = classifier("I loved Star Wars so much!")
16
+ print(result)
 
 
17
 
 
 
 
18
 
19
+ # API_URL = "https://api-inference.huggingface.co/models/peace4ever/roberta-large-finetuned-mongolian_v4"
20
+ #
21
+
22
+ # def query(payload):
23
+ # response = requests.post(API_URL, headers=headers, json=payload)
24
+ # return response.json()
25
+
26
+ # output = query({
27
+ # "inputs": "I like you. I love you",
28
+ # })
29
+
30
+
31
+ # model_name = "peace4ever/roberta-large-finetuned-mongolian_v4"
32
+ # tokenizer = AutoTokenizer.from_pretrained(model_name)
33
+ # model = AutoModelForSequenceClassification.from_pretrained(model_name)
34
+
35
+ # text = st.text_area("Өгүүлбэр оруулна уу?")
36
+ # encoded_input = tokenizer(text, return_tensors="pt")
37
+ # output = model(**encoded_input)
38
+
39
+ # label_map = {"positive": 0, "negative": 1, "neutral": 2}
40
+
41
+ # # Update the model configuration with custom labels
42
+ # config = AutoConfig.from_pretrained(model_name)
43
+ # config.label2id = {"positive": 0, "negative": 1, "neutral": 2}
44
+ # config.id2label = {0: "positive", 1: "negative", 2: "neutral"}
45
+ # config.save_pretrained(model_name)
46
+
47
+ # predicted_label_id = torch.argmax(output.logits, dim=1).item()
48
+ # id2label = model.config.id2label
49
+ # predicted_label = id2label[predicted_label_id]
50
+
51
+ # print("Predicted Class:", predicted_label)
52
 
53
  # st.json(predicted_label)
54