peace4ever commited on
Commit
018188f
1 Parent(s): e1a9fd7

test again

Browse files
Files changed (1) hide show
  1. app.py +12 -8
app.py CHANGED
@@ -1,21 +1,25 @@
1
  import streamlit as st
2
- import torch as torch
3
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
4
  from transformers import pipeline
5
- from PIL import Image
6
 
7
- model_name = "peace4ever/roberta-large-finetuned-mongolian_v3"
8
- pipeline = pipeline(task="sentiment-analysis", model=model_name)
9
 
10
  st.title("Эерэг? Сөрөг эсвэл аль нь ч биш?")
11
  text = st.text_area("Өгүүлбэр оруулна уу?")
12
 
13
  if text is not None:
14
-
15
- col1, col2 = st.columns(2)
16
  predictions = pipeline(text)
17
- col2.header("Probabilities")
18
- print(predictions)
 
 
 
 
 
 
 
19
 
20
 
21
  # tokenizer = AutoTokenizer.from_pretrained(model_name)
 
1
  import streamlit as st
2
+ import torch
3
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
4
  from transformers import pipeline
 
5
 
6
+ model_name = "peace4ever/roberta-large-finetuned-mongolian_v3"
7
+ pipeline = pipeline(task="sentiment-analysis", model=model_name) # Load pre-trained pipeline
8
 
9
  st.title("Эерэг? Сөрөг эсвэл аль нь ч биш?")
10
  text = st.text_area("Өгүүлбэр оруулна уу?")
11
 
12
  if text is not None:
 
 
13
  predictions = pipeline(text)
14
+
15
+ col1, col2 = st.columns(2)
16
+ col1.header("Sentiment")
17
+ col2.header("Probability")
18
+
19
+ for label, probability in zip(predictions[0]["label"], predictions[0]["score"]):
20
+ col1.write(label) # Display sentiment label (e.g., "POSITIVE", "NEGATIVE")
21
+ col2.write(f"{probability:.2f}") # Display probability with 2 decimal places
22
+
23
 
24
 
25
  # tokenizer = AutoTokenizer.from_pretrained(model_name)