Update index.js
Browse files
index.js
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
-
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers';
|
|
|
|
|
|
|
2 |
|
3 |
// Since we will download the model from the Hugging Face Hub, we can skip the local model check
|
4 |
env.allowLocalModels = false;
|
@@ -9,11 +12,18 @@ const fileUpload = document.getElementById('upload');
|
|
9 |
const imageContainer = document.getElementById('container');
|
10 |
const example = document.getElementById('example');
|
11 |
|
12 |
-
const EXAMPLE_URL =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
// Create a new object detection pipeline
|
15 |
status.textContent = 'Loading model...';
|
16 |
-
const detector = await pipeline('object-detection', 'Xenova/detr-resnet-50');
|
17 |
status.textContent = 'Ready';
|
18 |
|
19 |
example.addEventListener('click', (e) => {
|
@@ -50,30 +60,156 @@ async function detect(img) {
|
|
50 |
output.forEach(renderBox);
|
51 |
}
|
52 |
|
53 |
-
|
54 |
-
function
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
}
|
|
|
|
|
|
1 |
+
import { pipeline, env, AutoTokenizer, RawImage } from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers';
|
2 |
+
import { getModelJSON } from "https://cdn.jsdelivr.net/npm/@huggingface/transformers/utils/hub.js";
|
3 |
+
import { Tensor } from "https://cdn.jsdelivr.net/npm/@huggingface/transformer/utils/tensor.js";
|
4 |
+
import * as ort from "https://cdn.jsdelivr.net/npm/onnxruntime-web@1.20.0/dist/ort.webgpu.mjs";
|
5 |
|
6 |
// Since we will download the model from the Hugging Face Hub, we can skip the local model check
|
7 |
env.allowLocalModels = false;
|
|
|
12 |
const imageContainer = document.getElementById('container');
|
13 |
const example = document.getElementById('example');
|
14 |
|
15 |
+
const EXAMPLE_URL = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg",
|
16 |
+
const INPUT_IMAGE_SIZE = [960, 960] as const;
|
17 |
+
const HEIGHT_FACTOR = 10;
|
18 |
+
const WIDTH_FACTOR = 10;
|
19 |
+
const IMAGE_EMBED_SIZE = WIDTH_FACTOR * HEIGHT_FACTOR;
|
20 |
+
const MAX_SEQ_LENGTH = 1024;
|
21 |
+
const ONNX_URL = "http://localhost:3004/onnx";
|
22 |
+
const BASE_MODEL = "Qwen/Qwen2-VL-2B-Instruct";
|
23 |
+
const QUANTIZATION = "q4f16";
|
24 |
+
const MAX_SINGLE_CHAT_LENGTH = 10;
|
25 |
|
|
|
26 |
status.textContent = 'Loading model...';
|
|
|
27 |
status.textContent = 'Ready';
|
28 |
|
29 |
example.addEventListener('click', (e) => {
|
|
|
60 |
output.forEach(renderBox);
|
61 |
}
|
62 |
|
63 |
+
|
64 |
+
export async function simplifiedLLMVision(
|
65 |
+
imagePath: string,
|
66 |
+
query: string,
|
67 |
+
vision = true
|
68 |
+
) {
|
69 |
+
const suffix = QUANTIZATION ? `_${QUANTIZATION}` : "";
|
70 |
+
|
71 |
+
const config = (await getModelJSON(BASE_MODEL, "config.json")) as any;
|
72 |
+
|
73 |
+
const prompt_head_len = new Tensor("int64", new BigInt64Array([5n]), [1]);
|
74 |
+
|
75 |
+
let position_ids;
|
76 |
+
let num_decode = 0;
|
77 |
+
let history_len = new Tensor("int64", new BigInt64Array([0n]), [1]);
|
78 |
+
|
79 |
+
let past_key_states = new ort.Tensor(
|
80 |
+
"float16",
|
81 |
+
new Uint16Array(
|
82 |
+
config.num_hidden_layers *
|
83 |
+
config.num_key_value_heads *
|
84 |
+
MAX_SEQ_LENGTH *
|
85 |
+
(config.hidden_size / config.num_attention_heads)
|
86 |
+
).fill(0),
|
87 |
+
[
|
88 |
+
config.num_hidden_layers,
|
89 |
+
config.num_key_value_heads,
|
90 |
+
MAX_SEQ_LENGTH,
|
91 |
+
config.hidden_size / config.num_attention_heads,
|
92 |
+
]
|
93 |
+
);
|
94 |
+
|
95 |
+
let past_value_states = past_key_states;
|
96 |
+
|
97 |
+
let attention_mask = new ort.Tensor(
|
98 |
+
"float16",
|
99 |
+
new Uint16Array([0xfbff]), // -65504.0 in float16
|
100 |
+
[1]
|
101 |
+
);
|
102 |
+
|
103 |
+
let pos_factor = new Tensor("float16", new Uint16Array([0]), [1]);
|
104 |
+
|
105 |
+
const tokenizer = await AutoTokenizer.from_pretrained(BASE_MODEL);
|
106 |
+
const prompt = `\n<|im_start|>user\n<|vision_start|><|vision_end|>${query}<|im_end|>\n<|im_start|>assistant\n`;
|
107 |
+
const token = await tokenizer(prompt, {
|
108 |
+
return_tensors: "pt",
|
109 |
+
add_generation_prompt: false,
|
110 |
+
tokenize: true,
|
111 |
+
}).input_ids;
|
112 |
+
|
113 |
+
const seq_length = token.dims[1];
|
114 |
+
let ids_len = new Tensor("int64", new BigInt64Array([BigInt(seq_length)]), [
|
115 |
+
1,
|
116 |
+
]);
|
117 |
+
|
118 |
+
let input_ids = new ort.Tensor(
|
119 |
+
"int32",
|
120 |
+
new Int32Array(MAX_SEQ_LENGTH).fill(0),
|
121 |
+
[MAX_SEQ_LENGTH]
|
122 |
+
);
|
123 |
+
|
124 |
+
input_ids.data.set(Array.from(token.data.slice(0, seq_length), Number));
|
125 |
+
|
126 |
+
if (vision) {
|
127 |
+
let image = await RawImage.fromURL(imagePath);
|
128 |
+
image = image.rgb().toTensor("CHW").to("float32").div_(255.0);
|
129 |
+
const pixel_values = image.unsqueeze(0);
|
130 |
+
|
131 |
+
const ortSessionA = await ort.InferenceSession.create(
|
132 |
+
`${BASE_URL}/QwenVL_A${suffix}.onnx`,
|
133 |
+
{ executionProviders: ["webgpu"] }
|
134 |
+
);
|
135 |
+
|
136 |
+
const { image_embed } = await ortSessionA.run({ pixel_values });
|
137 |
+
|
138 |
+
ids_len = ids_len.add(BigInt(IMAGE_EMBED_SIZE));
|
139 |
+
|
140 |
+
const ortSessionD = await ort.InferenceSession.create(
|
141 |
+
`${BASE_URL}/QwenVL_D${suffix}.onnx`,
|
142 |
+
{ executionProviders: ["webgpu"] }
|
143 |
+
);
|
144 |
+
|
145 |
+
({ hidden_states: past_key_states, position_ids } =
|
146 |
+
await ortSessionD.run({
|
147 |
+
"hidden_states.1": past_key_states,
|
148 |
+
image_embed,
|
149 |
+
ids_len,
|
150 |
+
"ids_len_minus": new Tensor(
|
151 |
+
"int32",
|
152 |
+
new Int32Array([Number(ids_len.item()) - Number(prompt_head_len.item())]),
|
153 |
+
[1]
|
154 |
+
),
|
155 |
+
"split_factor": new Tensor(
|
156 |
+
"int32",
|
157 |
+
new Int32Array([
|
158 |
+
MAX_SEQ_LENGTH - Number(ids_len.item()) - IMAGE_EMBED_SIZE,
|
159 |
+
]),
|
160 |
+
[1]
|
161 |
+
),
|
162 |
+
}));
|
163 |
+
}
|
164 |
+
|
165 |
+
const ortSessionB = await ort.InferenceSession.create(
|
166 |
+
`${BASE_URL}/QwenVL_B${suffix}.onnx`,
|
167 |
+
{ executionProviders: ["webgpu"] }
|
168 |
+
);
|
169 |
+
|
170 |
+
while (
|
171 |
+
num_decode < MAX_SINGLE_CHAT_LENGTH &&
|
172 |
+
Number(history_len.data[0]) < MAX_SEQ_LENGTH
|
173 |
+
) {
|
174 |
+
const ortSessionE = await ort.InferenceSession.create(
|
175 |
+
`${BASE_URL}/QwenVL_E_q4f16.onnx`,
|
176 |
+
{ executionProviders: ["wasm"] }
|
177 |
+
);
|
178 |
+
|
179 |
+
const result = await ortSessionE.run({
|
180 |
+
hidden_states: past_key_states,
|
181 |
+
attention_mask,
|
182 |
+
"past_key_states.1": past_key_states,
|
183 |
+
"past_value_states.1": past_value_states,
|
184 |
+
history_len,
|
185 |
+
ids_len,
|
186 |
+
position_ids,
|
187 |
+
pos_factor,
|
188 |
+
});
|
189 |
+
|
190 |
+
const token_id = result.max_logit_ids;
|
191 |
+
if (token_id === 151643 || token_id === 151645) break;
|
192 |
+
|
193 |
+
num_decode++;
|
194 |
+
|
195 |
+
history_len = history_len.add(BigInt(1));
|
196 |
+
pos_factor = new Tensor(
|
197 |
+
"float16",
|
198 |
+
new Uint16Array([Number(pos_factor.data[0]) + 1]),
|
199 |
+
[1]
|
200 |
+
);
|
201 |
+
|
202 |
+
past_key_states = result.past_key_states;
|
203 |
+
past_value_states = result.past_value_states;
|
204 |
+
|
205 |
+
input_ids.data[0] = Number(token_id.data[0]);
|
206 |
+
const { hidden_states } = await ortSessionB.run({
|
207 |
+
input_ids,
|
208 |
+
ids_len,
|
209 |
+
});
|
210 |
+
|
211 |
+
past_key_states = hidden_states;
|
212 |
+
}
|
213 |
}
|
214 |
+
|
215 |
+
|