PyroSama commited on
Commit
942ca32
1 Parent(s): 36325f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -13
app.py CHANGED
@@ -24,6 +24,10 @@ from transformers import AutoProcessor
24
  model = SeamlessM4TForTextToText.from_pretrained("facebook/hf-seamless-m4t-medium")
25
  processor = AutoProcessor.from_pretrained("facebook/hf-seamless-m4t-medium")
26
 
 
 
 
 
27
  # OCR Predictor initialization
28
  OCRpredictor = ocr_predictor(det_arch='db_mobilenet_v3_large', reco_arch='crnn_vgg16_bn', pretrained=True)
29
 
@@ -65,19 +69,24 @@ def process_text_in_chunks(text, process_function, max_chunk_size=256):
65
  return processed_text.strip()
66
  @spaces.GPU(duration=120)
67
  def greet(img, apply_grammar_correction, apply_spell_check):
68
- img.save("out.jpg")
69
- doc = DocumentFile.from_images("out.jpg")
70
- output = OCRpredictor(doc)
71
-
72
- res = ""
73
- for obj in output.pages:
74
- for obj1 in obj.blocks:
75
- for obj2 in obj1.lines:
76
- for obj3 in obj2.words:
77
- res += " " + obj3.value
78
- res += "\n"
79
- res += "\n"
80
-
 
 
 
 
 
81
  # Process in chunks for grammar correction
82
  if apply_grammar_correction:
83
  res = process_text_in_chunks(res, lambda x: happy_tt.generate_text("grammar: " + x, args=grammar_args).text)
 
24
  model = SeamlessM4TForTextToText.from_pretrained("facebook/hf-seamless-m4t-medium")
25
  processor = AutoProcessor.from_pretrained("facebook/hf-seamless-m4t-medium")
26
 
27
+
28
+ import pytesseract as pt
29
+ import cv2
30
+
31
  # OCR Predictor initialization
32
  OCRpredictor = ocr_predictor(det_arch='db_mobilenet_v3_large', reco_arch='crnn_vgg16_bn', pretrained=True)
33
 
 
69
  return processed_text.strip()
70
  @spaces.GPU(duration=120)
71
  def greet(img, apply_grammar_correction, apply_spell_check):
72
+ # img.save("out.jpg")
73
+ # doc = DocumentFile.from_images("out.jpg")
74
+ # output = OCRpredictor(doc)
75
+
76
+ # res = ""
77
+ # for obj in output.pages:
78
+ # for obj1 in obj.blocks:
79
+ # for obj2 in obj1.lines:
80
+ # for obj3 in obj2.words:
81
+ # res += " " + obj3.value
82
+ # res += "\n"
83
+ # res += "\n"
84
+
85
+
86
+ # img = cv2.imread(inputPath)
87
+ res = pt.image_to_string(img,lang='eng')
88
+ # print(text)
89
+
90
  # Process in chunks for grammar correction
91
  if apply_grammar_correction:
92
  res = process_text_in_chunks(res, lambda x: happy_tt.generate_text("grammar: " + x, args=grammar_args).text)