Spaces:
Sleeping
Sleeping
vteam27
commited on
Commit
·
5a08d5f
1
Parent(s):
57b1a45
added RAG
Browse files- app.py +147 -0
- requirements.txt +21 -5
- utils.py +59 -1
app.py
CHANGED
@@ -14,6 +14,7 @@ from happytransformer import HappyTextToText, TTSettings
|
|
14 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,logging
|
15 |
from transformers.integrations import deepspeed
|
16 |
import re
|
|
|
17 |
from lang_list import (
|
18 |
LANGUAGE_NAME_TO_CODE,
|
19 |
T2TT_TARGET_LANGUAGE_NAMES,
|
@@ -251,12 +252,158 @@ with gr.Blocks() as demo_t2tt:
|
|
251 |
api_name="t2tt",
|
252 |
)
|
253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
with gr.Blocks() as demo:
|
255 |
with gr.Tabs():
|
256 |
with gr.Tab(label="OCR"):
|
257 |
demo_ocr.render()
|
258 |
with gr.Tab(label="Translate"):
|
259 |
demo_t2tt.render()
|
|
|
|
|
260 |
|
261 |
if __name__ == "__main__":
|
262 |
demo.launch()
|
|
|
14 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,logging
|
15 |
from transformers.integrations import deepspeed
|
16 |
import re
|
17 |
+
import torch
|
18 |
from lang_list import (
|
19 |
LANGUAGE_NAME_TO_CODE,
|
20 |
T2TT_TARGET_LANGUAGE_NAMES,
|
|
|
252 |
api_name="t2tt",
|
253 |
)
|
254 |
|
255 |
+
|
256 |
+
#RAG
|
257 |
+
import utils
|
258 |
+
from langchain_mistralai import ChatMistralAI
|
259 |
+
from langchain_core.prompts import ChatPromptTemplate
|
260 |
+
from langchain_core.output_parsers import StrOutputParser
|
261 |
+
from langchain_community.vectorstores import Chroma
|
262 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
263 |
+
from langchain_core.runnables import RunnablePassthrough
|
264 |
+
os.environ['MISTRAL_API_KEY'] = 'XuyOObDE7trMbpAeI7OXYr3dnmoWy3L0'
|
265 |
+
|
266 |
+
class VectorData():
|
267 |
+
def __init__(self):
|
268 |
+
embedding_model_name = 'l3cube-pune/punjabi-sentence-similarity-sbert'
|
269 |
+
|
270 |
+
model_kwargs = {'device':'cuda' if torch.cuda.is_available() else 'cpu',"trust_remote_code": True}
|
271 |
+
|
272 |
+
self.embeddings = HuggingFaceEmbeddings(
|
273 |
+
model_name=embedding_model_name,
|
274 |
+
model_kwargs=model_kwargs
|
275 |
+
)
|
276 |
+
|
277 |
+
self.vectorstore = Chroma(persist_directory="chroma_db", embedding_function=self.embeddings)
|
278 |
+
self.retriever = self.vectorstore.as_retriever()
|
279 |
+
self.ingested_files = []
|
280 |
+
self.prompt = ChatPromptTemplate.from_messages(
|
281 |
+
[
|
282 |
+
(
|
283 |
+
"system",
|
284 |
+
"""Answer the question based on the given context. Dont give any ans if context is not valid to question. Always give the source of context:
|
285 |
+
{context}
|
286 |
+
""",
|
287 |
+
),
|
288 |
+
("human", "{question}"),
|
289 |
+
]
|
290 |
+
)
|
291 |
+
self.llm = ChatMistralAI(model="mistral-large-latest")
|
292 |
+
self.rag_chain = (
|
293 |
+
{"context": self.retriever, "question": RunnablePassthrough()}
|
294 |
+
| self.prompt
|
295 |
+
| self.llm
|
296 |
+
| StrOutputParser()
|
297 |
+
)
|
298 |
+
|
299 |
+
def add_file(self,file):
|
300 |
+
if file is not None:
|
301 |
+
self.ingested_files.append(file.name.split('/')[-1])
|
302 |
+
self.retriever, self.vectorstore = utils.add_doc(file,self.vectorstore)
|
303 |
+
self.rag_chain = (
|
304 |
+
{"context": self.retriever, "question": RunnablePassthrough()}
|
305 |
+
| self.prompt
|
306 |
+
| self.llm
|
307 |
+
| StrOutputParser()
|
308 |
+
)
|
309 |
+
return [[name] for name in self.ingested_files]
|
310 |
+
|
311 |
+
def delete_file_by_name(self,file_name):
|
312 |
+
if file_name in self.ingested_files:
|
313 |
+
self.retriever, self.vectorstore = utils.delete_doc(file_name,self.vectorstore)
|
314 |
+
self.ingested_files.remove(file_name)
|
315 |
+
return [[name] for name in self.ingested_files]
|
316 |
+
|
317 |
+
def delete_all_files(self):
|
318 |
+
self.ingested_files.clear()
|
319 |
+
self.retriever, self.vectorstore = utils.delete_all_doc(self.vectorstore)
|
320 |
+
return []
|
321 |
+
|
322 |
+
data_obj = VectorData()
|
323 |
+
|
324 |
+
# Function to handle question answering
|
325 |
+
def answer_question(question):
|
326 |
+
if question.strip():
|
327 |
+
return f'{data_obj.rag_chain.invoke(question)}'
|
328 |
+
return "Please enter a question."
|
329 |
+
|
330 |
+
with gr.Blocks() as rag_interface:
|
331 |
+
# Title and Description
|
332 |
+
gr.Markdown("# RAG Interface")
|
333 |
+
gr.Markdown("Manage documents and ask questions with a Retrieval-Augmented Generation (RAG) system.")
|
334 |
+
|
335 |
+
with gr.Row():
|
336 |
+
# Left Column: File Management
|
337 |
+
with gr.Column():
|
338 |
+
gr.Markdown("### File Management")
|
339 |
+
|
340 |
+
# File upload and ingest
|
341 |
+
file_input = gr.File(label="Upload File to Ingest")
|
342 |
+
add_file_button = gr.Button("Ingest File")
|
343 |
+
|
344 |
+
# Scrollable list for ingested files
|
345 |
+
ingested_files_box = gr.Dataframe(
|
346 |
+
headers=["Files"],
|
347 |
+
datatype="str",
|
348 |
+
row_count=4, # Limits the visible rows to create a scrollable view
|
349 |
+
interactive=False
|
350 |
+
)
|
351 |
+
|
352 |
+
# Radio buttons to choose delete option
|
353 |
+
delete_option = gr.Radio(choices=["Delete by File Name", "Delete All Files"], label="Delete Option")
|
354 |
+
file_name_input = gr.Textbox(label="Enter File Name to Delete", visible=False)
|
355 |
+
delete_button = gr.Button("Delete Selected")
|
356 |
+
|
357 |
+
# Show or hide file name input based on delete option selection
|
358 |
+
def toggle_file_input(option):
|
359 |
+
return gr.update(visible=(option == "Delete by File Name"))
|
360 |
+
|
361 |
+
delete_option.change(fn=toggle_file_input, inputs=delete_option, outputs=file_name_input)
|
362 |
+
|
363 |
+
# Handle file ingestion
|
364 |
+
add_file_button.click(
|
365 |
+
fn=data_obj.add_file,
|
366 |
+
inputs=file_input,
|
367 |
+
outputs=ingested_files_box
|
368 |
+
)
|
369 |
+
|
370 |
+
# Handle delete based on selected option
|
371 |
+
def delete_action(delete_option, file_name):
|
372 |
+
if delete_option == "Delete by File Name" and file_name:
|
373 |
+
return data_obj.delete_file_by_name(file_name)
|
374 |
+
elif delete_option == "Delete All Files":
|
375 |
+
return data_obj.delete_all_files()
|
376 |
+
else:
|
377 |
+
return [[name] for name in data_obj.ingested_files]
|
378 |
+
|
379 |
+
delete_button.click(
|
380 |
+
fn=delete_action,
|
381 |
+
inputs=[delete_option, file_name_input],
|
382 |
+
outputs=ingested_files_box
|
383 |
+
)
|
384 |
+
|
385 |
+
# Right Column: Question Answering
|
386 |
+
with gr.Column():
|
387 |
+
gr.Markdown("### Ask a Question")
|
388 |
+
|
389 |
+
# Question input
|
390 |
+
question_input = gr.Textbox(label="Enter your question")
|
391 |
+
|
392 |
+
# Get answer button and answer output
|
393 |
+
ask_button = gr.Button("Get Answer")
|
394 |
+
answer_output = gr.Textbox(label="Answer", interactive=False)
|
395 |
+
|
396 |
+
ask_button.click(fn=answer_question, inputs=question_input, outputs=answer_output)
|
397 |
+
|
398 |
+
|
399 |
with gr.Blocks() as demo:
|
400 |
with gr.Tabs():
|
401 |
with gr.Tab(label="OCR"):
|
402 |
demo_ocr.render()
|
403 |
with gr.Tab(label="Translate"):
|
404 |
demo_t2tt.render()
|
405 |
+
with gr.Tab(label="RAG"):
|
406 |
+
rag_interface.render()
|
407 |
|
408 |
if __name__ == "__main__":
|
409 |
demo.launch()
|
requirements.txt
CHANGED
@@ -4,14 +4,30 @@ reportlab>=3.6.2
|
|
4 |
PyPDF2==1.26.0
|
5 |
happytransformer
|
6 |
python-doctr[torch]@git+https://github.com/mindee/doctr.git
|
7 |
-
transformers
|
8 |
fairseq2==0.1
|
9 |
-
pydub
|
10 |
yt-dlp
|
11 |
sentencepiece
|
12 |
nltk
|
13 |
-
numpy==1.26.4
|
14 |
opencv-python==4.9.0.80
|
15 |
-
packaging
|
16 |
pillow==10.3.0
|
17 |
-
pytesseract==0.3.10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
PyPDF2==1.26.0
|
5 |
happytransformer
|
6 |
python-doctr[torch]@git+https://github.com/mindee/doctr.git
|
|
|
7 |
fairseq2==0.1
|
|
|
8 |
yt-dlp
|
9 |
sentencepiece
|
10 |
nltk
|
|
|
11 |
opencv-python==4.9.0.80
|
|
|
12 |
pillow==10.3.0
|
13 |
+
pytesseract==0.3.10
|
14 |
+
packaging
|
15 |
+
torch
|
16 |
+
fastapi
|
17 |
+
uvicorn
|
18 |
+
pandas
|
19 |
+
numpy
|
20 |
+
torch
|
21 |
+
transformers
|
22 |
+
scikit-learn
|
23 |
+
sentence-transformers
|
24 |
+
langchain
|
25 |
+
langchain-community
|
26 |
+
langchain-core
|
27 |
+
langchain-huggingface
|
28 |
+
langchain-mistralai
|
29 |
+
langchain-text-splitters
|
30 |
+
langsmith
|
31 |
+
chroma-hnswlib
|
32 |
+
chromadb
|
33 |
+
fastapi
|
utils.py
CHANGED
@@ -160,4 +160,62 @@ class HocrParser():
|
|
160 |
if image is not None:
|
161 |
pdf.drawImage(ImageReader(Image.fromarray(image)),
|
162 |
0, 0, width=width, height=height)
|
163 |
-
pdf.save()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
if image is not None:
|
161 |
pdf.drawImage(ImageReader(Image.fromarray(image)),
|
162 |
0, 0, width=width, height=height)
|
163 |
+
pdf.save()
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
168 |
+
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
|
169 |
+
from langchain_community.vectorstores import Chroma
|
170 |
+
from langchain.schema import Document
|
171 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
172 |
+
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
173 |
+
import torch
|
174 |
+
|
175 |
+
embedding_model_name = 'l3cube-pune/punjabi-sentence-similarity-sbert'
|
176 |
+
|
177 |
+
model_kwargs = {'device':'cuda' if torch.cuda.is_available() else 'cpu',"trust_remote_code": True}
|
178 |
+
|
179 |
+
embeddings = HuggingFaceEmbeddings(
|
180 |
+
model_name=embedding_model_name,
|
181 |
+
model_kwargs=model_kwargs
|
182 |
+
)
|
183 |
+
|
184 |
+
vectorstore = None
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
def read_file(data: str) -> Document:
|
189 |
+
f = open(data,'r')
|
190 |
+
content = f.read()
|
191 |
+
f.close()
|
192 |
+
doc = Document(page_content=content, metadata={"name": data.split('/')[-1]})
|
193 |
+
return doc
|
194 |
+
|
195 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=100)
|
196 |
+
|
197 |
+
def add_doc(data,vectorstore):
|
198 |
+
doc = read_file(data)
|
199 |
+
splits = text_splitter.split_documents([doc])
|
200 |
+
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
|
201 |
+
retriever = vectorstore.as_retriever(search_kwargs={'k':1})
|
202 |
+
return retriever, vectorstore
|
203 |
+
|
204 |
+
def delete_doc(delete_name,vectorstore):
|
205 |
+
delete_doc_ids = []
|
206 |
+
for idx,name in enumerate(vectorstore.get()['metadatas']):
|
207 |
+
if name['name'] == delete_name:
|
208 |
+
delete_doc_ids.append(vectorstore.get()['ids'][idx])
|
209 |
+
for id in delete_doc_ids:
|
210 |
+
vectorstore.delete(ids = id)
|
211 |
+
# vectorstore.persist()
|
212 |
+
retriever = vectorstore.as_retriever(search_kwargs={'k':1})
|
213 |
+
return retriever, vectorstore
|
214 |
+
|
215 |
+
def delete_all_doc(vectorstore):
|
216 |
+
delete_doc_ids = vectorstore.get()['ids']
|
217 |
+
for id in delete_doc_ids:
|
218 |
+
vectorstore.delete(ids = id)
|
219 |
+
# vectorstore.persist()
|
220 |
+
retriever = vectorstore.as_retriever(search_kwargs={'k':1})
|
221 |
+
return retriever, vectorstore
|