Spaces:
Runtime error
Runtime error
first commit to hf space
Browse files- .DS_Store +0 -0
- app.py +236 -0
- images/.DS_Store +0 -0
- images/px.html +0 -0
- images/px_2d.html +0 -0
- images/px_3d.html +0 -0
- images/screenshot_1.png +0 -0
- images/screenshot_2.png +0 -0
- images/tsne.png +0 -0
- images/wine_icon.png +0 -0
- requirements.txt +8 -0
- scripts/.DS_Store +0 -0
- scripts/__pycache__/preprocessing.cpython-310.pyc +0 -0
- scripts/preprocessing.py +162 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
from PIL import Image
|
5 |
+
import streamlit as st
|
6 |
+
from streamlit import components
|
7 |
+
from datasets import Dataset, load_dataset, load_from_disk
|
8 |
+
import faiss
|
9 |
+
from scripts.preprocessing import preprocess
|
10 |
+
|
11 |
+
# App config
|
12 |
+
icon = Image.open('./images/wine_icon.png')
|
13 |
+
st.set_page_config(page_title="Sommeli-AI",
|
14 |
+
page_icon=icon,
|
15 |
+
layout="wide")
|
16 |
+
hide_default_format = """
|
17 |
+
<style>
|
18 |
+
#MainMenu {visibility: visible; }
|
19 |
+
footer {visibility: hidden;}
|
20 |
+
</style>
|
21 |
+
"""
|
22 |
+
st.markdown(hide_default_format, unsafe_allow_html=True)
|
23 |
+
|
24 |
+
# App functions
|
25 |
+
@st.cache_data
|
26 |
+
def read_data(ds_path=None):
|
27 |
+
|
28 |
+
if ds_path is not None:
|
29 |
+
# Read in hf file
|
30 |
+
embeddings_dataset = load_from_disk(ds_path)
|
31 |
+
else:
|
32 |
+
embeddings_dataset = load_dataset("pdjewell/sommeli_ai", split="train")
|
33 |
+
|
34 |
+
# Convert to pandas df
|
35 |
+
embeddings_dataset.set_format("pandas")
|
36 |
+
df = embeddings_dataset[:]
|
37 |
+
|
38 |
+
# preprocess data (add type col, remove dups)
|
39 |
+
df = preprocess(df)
|
40 |
+
|
41 |
+
return df
|
42 |
+
|
43 |
+
|
44 |
+
def get_neighbours(df, query_embedding, k=6,
|
45 |
+
metric='inner'):
|
46 |
+
|
47 |
+
# convert from pandas df to hf ds
|
48 |
+
ds = Dataset.from_pandas(df)
|
49 |
+
ds.reset_format()
|
50 |
+
ds = ds.with_format("np")
|
51 |
+
|
52 |
+
# add faiss index
|
53 |
+
if metric == 'inner':
|
54 |
+
ds.add_faiss_index(column="embeddings",
|
55 |
+
metric_type=faiss.METRIC_INNER_PRODUCT)
|
56 |
+
else:
|
57 |
+
ds.add_faiss_index(column="embeddings",
|
58 |
+
metric_type=faiss.METRIC_L2)
|
59 |
+
|
60 |
+
scores, samples = ds.get_nearest_examples(
|
61 |
+
"embeddings", query_embedding, k=k)
|
62 |
+
|
63 |
+
samples.pop('embeddings')
|
64 |
+
samples.pop('__index_level_0__')
|
65 |
+
|
66 |
+
return scores, samples
|
67 |
+
|
68 |
+
|
69 |
+
def filter_df_search(df: pd.DataFrame) -> pd.DataFrame:
|
70 |
+
|
71 |
+
modify_search = st.checkbox("🔍 Further filter search selection")
|
72 |
+
|
73 |
+
if not modify_search:
|
74 |
+
return df
|
75 |
+
|
76 |
+
df = df.copy()
|
77 |
+
|
78 |
+
modification_container_search = st.container()
|
79 |
+
|
80 |
+
with modification_container_search:
|
81 |
+
to_filter_columns = st.multiselect("Filter on:",
|
82 |
+
['Province', 'Region', 'Winery','Score', 'Price'],
|
83 |
+
key='search')
|
84 |
+
|
85 |
+
for column in to_filter_columns:
|
86 |
+
if column in ['Score', 'Price']: # Use slider for 'points' and 'price'
|
87 |
+
min_val = 0
|
88 |
+
max_val = int(df[column].max())
|
89 |
+
user_input = st.slider(f"Values for {column}", min_val, max_val, (min_val, max_val))
|
90 |
+
df = df[(df[column] >= user_input[0]) & (df[column] <= user_input[1])]
|
91 |
+
elif column in ['Country', 'Province', 'Region', 'Variety', 'Winery']: # Use multiselect for these columns
|
92 |
+
unique_values = df[column].dropna().unique()
|
93 |
+
default_values = [unique_values[0]] if len(unique_values) > 0 else [] # Select only the first unique value if it exists
|
94 |
+
user_input = st.multiselect(f"Values for {column}", unique_values, default_values)
|
95 |
+
df = df[df[column].isin(user_input)]
|
96 |
+
|
97 |
+
return df
|
98 |
+
|
99 |
+
|
100 |
+
def filter_df_recs(df: pd.DataFrame) -> pd.DataFrame:
|
101 |
+
|
102 |
+
modify_recs = st.checkbox("🔍 Filter recommendation results")
|
103 |
+
|
104 |
+
if not modify_recs:
|
105 |
+
return df
|
106 |
+
|
107 |
+
df = df.copy()
|
108 |
+
|
109 |
+
modification_container_recs = st.container()
|
110 |
+
|
111 |
+
with modification_container_recs:
|
112 |
+
|
113 |
+
to_filter_columns2 = st.multiselect("Filter on:",
|
114 |
+
['Country','Province', 'Region', 'Variety', 'Winery',
|
115 |
+
'Score', 'Price'],
|
116 |
+
key='recs')
|
117 |
+
|
118 |
+
for column in to_filter_columns2:
|
119 |
+
if column in ['Score', 'Price']: # Use slider for 'points' and 'price'
|
120 |
+
min_val = 0
|
121 |
+
max_val = int(df[column].max())
|
122 |
+
user_input = st.slider(f"Values for {column}", min_val, max_val, (min_val, max_val))
|
123 |
+
df = df[(df[column] >= user_input[0]) & (df[column] <= user_input[1])]
|
124 |
+
elif column in ['Country', 'Province', 'Region', 'Variety', 'Winery']: # Use multiselect for these columns
|
125 |
+
unique_values = df[column].dropna().unique()
|
126 |
+
default_values = [unique_values[0]] if len(unique_values) > 0 else [] # Select only the first unique value if it exists
|
127 |
+
user_input = st.multiselect(f"Values for {column}", unique_values, default_values)
|
128 |
+
df = df[df[column].isin(user_input)]
|
129 |
+
|
130 |
+
return df
|
131 |
+
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
st.title("🍷 Sommeli-AI")
|
135 |
+
col1, col2 = st.columns([0.6,0.4], gap="medium")
|
136 |
+
|
137 |
+
# Read in data
|
138 |
+
ds_path = "./data/wine_ds.hf"
|
139 |
+
df = read_data(ds_path=None)
|
140 |
+
|
141 |
+
with col2:
|
142 |
+
st.header("Explore the world of wine 🌍")
|
143 |
+
wine_plot = st.radio('Select plot type:', ['2D','3D'],
|
144 |
+
label_visibility = "hidden",
|
145 |
+
horizontal=True)
|
146 |
+
st.text("Click the legend categories to filter")
|
147 |
+
|
148 |
+
# Load the HTML file
|
149 |
+
with open('./images/px_2d.html', 'r') as file:
|
150 |
+
plot2d_html = file.read()
|
151 |
+
# Load the HTML file
|
152 |
+
with open('./images/px_3d.html', 'r') as file:
|
153 |
+
plot3d_html = file.read()
|
154 |
+
# Display the HTML plot in the Streamlit app
|
155 |
+
if wine_plot == '2D':
|
156 |
+
components.v1.html(plot2d_html, width=512, height=512)
|
157 |
+
elif wine_plot == '3D':
|
158 |
+
components.v1.html(plot3d_html, width=512, height=512)
|
159 |
+
|
160 |
+
with col1:
|
161 |
+
|
162 |
+
# Select all wine types initially
|
163 |
+
st.header("Search for similar wines 🥂")
|
164 |
+
# Select wine type: default is all
|
165 |
+
wine_types = df['Type'].unique()
|
166 |
+
selected_wine_types = st.multiselect("Select category 👇", wine_types, default=wine_types)
|
167 |
+
df = df[df['Type'].isin(selected_wine_types)]
|
168 |
+
subcol1, subcol2 = st.columns([0.5,0.5], gap="small")
|
169 |
+
with subcol1:
|
170 |
+
# Select wine variety: default is all
|
171 |
+
wine_vars = df['Variety'].unique()
|
172 |
+
selected_wine_vars = st.multiselect("Narrow down the variety 🍇",['Select all'] + list(wine_vars),
|
173 |
+
default = 'Select all')
|
174 |
+
if "Select all" in selected_wine_vars:
|
175 |
+
df_search = df
|
176 |
+
else:
|
177 |
+
df_search = df[df['Variety'].isin(selected_wine_vars)]
|
178 |
+
|
179 |
+
with subcol2:
|
180 |
+
# Select the country: default is all
|
181 |
+
countries = df_search['Country'].unique()
|
182 |
+
selected_countries = st.multiselect("Narrow down the country 🌎",['Select all'] + list(countries),
|
183 |
+
default = 'Select all')
|
184 |
+
if "Select all" in selected_countries:
|
185 |
+
df_search = df_search
|
186 |
+
else:
|
187 |
+
df_search = df_search[df_search['Country'].isin(selected_countries)]
|
188 |
+
|
189 |
+
# Add additional filters
|
190 |
+
df_search = filter_df_search(df_search)
|
191 |
+
|
192 |
+
# Create a search bar for the wine 'title'
|
193 |
+
selected_wine = st.selectbox("Search for and select a wine 👇", [''] + list(df_search["Title"].unique()))
|
194 |
+
|
195 |
+
if selected_wine:
|
196 |
+
# Get the embedding for selected_wine
|
197 |
+
query_embedding = df.loc[df['Title']==selected_wine, 'embeddings'].iloc[0]
|
198 |
+
|
199 |
+
tasting_notes = df.loc[df['Title']==selected_wine, 'Tasting notes'].iloc[0]
|
200 |
+
st.write(f"Tasting notes: {tasting_notes}")
|
201 |
+
|
202 |
+
# CSS to inject contained in a string
|
203 |
+
hide_table_row_index = """
|
204 |
+
<style>
|
205 |
+
thead tr th:first-child {display:none}
|
206 |
+
tbody th {display:none}
|
207 |
+
</style>
|
208 |
+
"""
|
209 |
+
# Inject CSS with Markdown
|
210 |
+
st.markdown(hide_table_row_index, unsafe_allow_html=True)
|
211 |
+
|
212 |
+
# Display selected wine
|
213 |
+
st.header(" 🍷 Your selected wine")
|
214 |
+
selected_cols = ['Title','Country','Province','Region','Winery',
|
215 |
+
'Variety','Tasting notes','Score']
|
216 |
+
st.table(df.loc[df['Title']==selected_wine, selected_cols].fillna(""))
|
217 |
+
|
218 |
+
# Slider for results to show
|
219 |
+
k = st.slider(f"Choose how many similar wines to show 👇", 1, 10, value=4)
|
220 |
+
|
221 |
+
# Filter recommendation results
|
222 |
+
df_results = filter_df_recs(df)
|
223 |
+
|
224 |
+
# Display results as table
|
225 |
+
if st.button("🔘 Press me to generate similar tasting wines"):
|
226 |
+
# Get neighbours
|
227 |
+
scores, samples = get_neighbours(df_results, query_embedding,
|
228 |
+
k=k+1, metric='l2')
|
229 |
+
recs_df = pd.DataFrame(samples).fillna("")
|
230 |
+
recs_df = recs_df.fillna(" ")
|
231 |
+
# Display results
|
232 |
+
st.header(f"🍾 Top {k} similar tasting wines")
|
233 |
+
st.table(recs_df.loc[1:,selected_cols])
|
234 |
+
|
235 |
+
else:
|
236 |
+
print("Awaiting selection")
|
images/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
images/px.html
ADDED
The diff for this file is too large to render.
See raw diff
|
|
images/px_2d.html
ADDED
The diff for this file is too large to render.
See raw diff
|
|
images/px_3d.html
ADDED
The diff for this file is too large to render.
See raw diff
|
|
images/screenshot_1.png
ADDED
images/screenshot_2.png
ADDED
images/tsne.png
ADDED
images/wine_icon.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets==2.12.0
|
2 |
+
faiss-cpu==1.7.4
|
3 |
+
gitdb==4.0.10
|
4 |
+
numpy==1.24.3
|
5 |
+
pandas==2.0.2
|
6 |
+
Pillow==9.5.0
|
7 |
+
pyarrow==12.0.0
|
8 |
+
streamlit==1.23.1
|
scripts/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
scripts/__pycache__/preprocessing.cpython-310.pyc
ADDED
Binary file (12 kB). View file
|
|
scripts/preprocessing.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
def preprocess(df):
|
7 |
+
|
8 |
+
df = df.copy()
|
9 |
+
|
10 |
+
White = ['White Blend', 'Pinot Gris', 'Riesling', 'Chardonnay', 'Chenin Blanc', 'Sauvignon Blanc',
|
11 |
+
'Viognier-Chardonnay', 'Catarratto', 'Inzolia', 'Bordeaux-style White Blend', 'Grillo',
|
12 |
+
'Albariño', 'Petit Manseng', 'Vernaccia', 'Grüner Veltliner', 'Viognier', 'Vermentino',
|
13 |
+
'Grenache Blanc', 'Pinot Blanc', 'Alsace white blend', 'Portuguese White', 'Verdejo',
|
14 |
+
'Fumé Blanc', 'Pinot Bianco', 'Ugni Blanc-Colombard', 'Friulano', 'Assyrtico', 'Vignoles',
|
15 |
+
'Muscat', 'Muscadelle', 'Garganega', 'Pinot Grigio','Cortese', 'Melon', 'Vidal', 'Verdelho',
|
16 |
+
'Marsanne', 'Vilana', 'Viura', 'Verduzzo', 'Verdicchio', 'Colombard', 'Sylvaner', 'Sémillon',
|
17 |
+
'Antão Vaz', 'Verdejo-Viura', 'Chenin Blanc-Chardonnay', 'Insolia', 'Ribolla Gialla',
|
18 |
+
'Weissburgunder', 'Traminer', 'Prié Blanc', 'Müller-Thurgau', 'Pansa Blanca', 'Muskat Ottonel',
|
19 |
+
'Sauvignon Blanc-Semillon', 'Semillon-Sauvignon Blanc', 'Bical', 'Viura-Chardonnay', 'Malvasia Bianca',
|
20 |
+
'Rhône-style White Blend', 'Scheurebe', 'Kerner', 'Carricante', 'Fiano', 'Früburgunder', 'Roussanne',
|
21 |
+
'Avesso', 'Chinuri', 'Muscat Blanc à Petits Grains', 'Xarel-lo', 'Greco', 'Trebbiano', 'Prié Blanc',
|
22 |
+
'Falanghina', 'Bical', 'Gelber Muskateller', 'Turbiana', 'Refosco', 'Alvarinho', 'Manzoni', 'Assyrtiko',
|
23 |
+
'Welschriesling', 'Rieslaner', 'Traminette', 'Marsanne-Viognier', 'Gewürztraminer-Riesling',
|
24 |
+
'Austrian white blend', 'Tocai', 'Chardonnay-Viognier', 'Fernão Pires', 'Seyval Blanc', 'Muscat Canelli',
|
25 |
+
'Arinto', 'Arneis', 'Malvasia', 'Altesse', 'Blanc du Bois', 'Provence white blend', 'Nosiola',
|
26 |
+
'Roussanne-Viognier', 'Godello', 'Auxerrois', 'Albana', 'Muskat', 'Grechetto', 'Encruzado',
|
27 |
+
'Garnacha Blanca', 'Pallagrello', 'Morava', 'Aleatico', 'Nascetta', 'Siria', 'Asprinio', 'Feteascǎ Regalǎ',
|
28 |
+
'Tocai Friulano', 'Schiava', 'Chardonnay-Semillon', 'Palomino', 'Norton',
|
29 |
+
'Loureiro-Arinto', 'Symphony', 'Edelzwicker', 'Madeira Blend', 'Gros and Petit Manseng', 'Jacquère',
|
30 |
+
'Chenin Blanc-Sauvignon Blanc', 'Marzemino', 'Chardonnay-Sauvignon Blanc', 'Trebbiano Spoletino',
|
31 |
+
'Chasselas', 'Hárslevelü', 'Siegerrebe','Colombard-Sauvignon Blanc', 'Diamond',
|
32 |
+
'Gros Manseng', 'Muskateller', 'Aligoté', 'Muscat Blanc', 'Viognier-Roussanne', 'Pallagrello Bianco',
|
33 |
+
'Veltliner', 'Chardonnay-Sauvignon', 'Chenin Blanc-Viognier', 'Vitovska', 'Grauburgunder', 'Macabeo',
|
34 |
+
'Verdil', 'Treixadura', 'Coda di Volpe', 'Viura-Verdejo', 'Bombino Bianco', 'Pinot-Chardonnay',
|
35 |
+
"Muscat d'Alexandrie", 'Chardonnay-Pinot Gris', 'Chardonnay-Pinot Blanc','Piquepoul Blanc', 'Orange Muscat',
|
36 |
+
'Ugni Blanc', 'Semillon-Chardonnay', 'Irsai Oliver', 'Greco Bianco', 'Viognier-Grenache Blanc', 'Pignoletto',
|
37 |
+
'Muscatel', 'White Riesling', 'Hondarrabi Zuri', 'Nuragus', 'Xynisteri', 'Sauvignon Musqué', 'Roussanne-Marsanne',
|
38 |
+
'Incrocio Manzoni', 'Terrantez', 'Bual', 'Verdejo-Sauvignon Blanc', 'Malvasia-Viura', 'Savatiano',
|
39 |
+
'Macabeo-Chardonnay', 'Tamjanika', 'Macabeo-Moscatel', 'Códega do Larinho','Pinot Gris-Gewürztraminer',
|
40 |
+
'Viosinho', 'Paralleda', 'Malvar', 'Airen', 'Erbaluce', 'Verdosilla', 'Aidani', 'Vinhão', 'Rolle', 'Orangetraube',
|
41 |
+
'Žilavka', 'Portuguiser', 'Gouveio', 'Bombino Nero', 'Malagouzia-Chardonnay', 'Elbling', 'Gragnano',
|
42 |
+
'Pinot Blanc-Chardonnay', 'Petit Meslier', 'Chardonnay Weissburgunder', 'Robola', 'Folle Blanche', 'Malagouzia',
|
43 |
+
'Rabigato', 'Sauvignonasse', 'Meseguera', 'Alvarinho-Chardonnay', 'Pinot Blanc-Viognier', 'Biancu Gentile',
|
44 |
+
'Xinisteri','Moschofilero-Chardonnay','Sauvignon Blanc-Sauvignon Gris', 'Trebbiano di Lugana', 'Verdeca',
|
45 |
+
'Chardonel', 'Silvaner-Traminer', 'Uvalino', 'Merseguera-Sauvignon Blanc', 'Cayuga',
|
46 |
+
'Nasco', 'Vital', 'Apple', 'Pinot Grigio-Sauvignon Blanc', 'Valvin Muscat', 'Malvasia Fina',
|
47 |
+
'Roditis-Moschofilero', 'Premsal', 'Jampal', 'Tokay Pinot Gris', 'Trajadura', 'Roscetto', 'Torontel',
|
48 |
+
'Viognier-Valdiguié',
|
49 |
+
'Zierfandler', 'Marsanne-Roussanne', 'Pinot Meunier', 'Muskat Ottonel', 'Moscatel', 'Moschofilero', 'White Port',
|
50 |
+
'Kisi', 'Kangoun', 'Posip', 'Uva di Troia', 'Zierfandler-Rotgipfler', 'Mauzac', 'Pinot Auxerrois', 'Neuburger',
|
51 |
+
'Sämling', 'Rkatsiteli', 'Trousseau Gris', 'Malvasia Istriana', 'Morillon', 'Tokay', 'Gros Plant', 'Muscat Hamburg',
|
52 |
+
'Emir', 'Tsolikouri', 'Narince', 'Grecanico', 'Madeleine Angevine', 'Doña Blanca', 'Graševina', 'Thrapsathiri',
|
53 |
+
'Cococciola', 'Plyto', 'Azal', 'Moscatel Graúdo', 'Malvasia di Candia', 'Maria Gomes', 'Muscat of Alexandria',
|
54 |
+
'Moscatel de Alejandría', 'Misket', 'Tamianka', 'Morio Muskat', 'Sauvignonasse',
|
55 |
+
'Viognier-Marsanne', 'Ryzlink Rýnský', 'Muscadel', 'Roussanne-Grenache Blanc', 'Chancellor', 'Picapoll',
|
56 |
+
'Blauburger', 'Athiri', 'Ondenc','Gewürztraminer', 'Torrontés', 'Furmint', 'Savagnin', 'Glera',
|
57 |
+
'Roter Veltliner', 'Silvaner', 'Ruché', 'Pecorino', 'Sauvignon Gris', 'Vidal Blanc', 'Albanello',
|
58 |
+
'Loureiro', 'Clairette', 'Verduzzo Friulano ', "Loin de l'Oeil", 'Timorasso', 'Pigato', 'Viognier-Gewürztraminer',
|
59 |
+
'Sauvignon Blanc-Chenin Blanc', 'Colombard-Ugni Blanc', 'Mtsvane', 'Rivaner', 'Vespaiolo', 'Biancolella',
|
60 |
+
'Riesling-Chardonnay', 'Maria Gomes-Bical', 'Gelber Traminer', 'Sercial', 'Grenache Gris', 'Chardonnay-Albariño',
|
61 |
+
'Roditis', 'Papaskarasi', 'Zibibbo', 'Malagousia', 'Rotgipfler', 'Durella', 'Cercial', 'Johannisberg Riesling',
|
62 |
+
'Teran', 'Mantonico', 'Timorasso', 'Zlahtina', 'Shiraz-Roussanne', 'Tămâioasă Românească', 'Ansonica', 'Feteasca',
|
63 |
+
'Catalanesca', 'Moscato di Noto', 'Moscato Giallo','Sauvignon Blanc-Chardonnay', 'Sauvignon-Sémillon', "Cesanese d'Affile",
|
64 |
+
'Sauvignon Blanc-Verdejo', 'Chardonnay-Riesling', 'Sauvignon Blanc-Assyrtiko','Zelen', 'Tempranillo Blanco',
|
65 |
+
'Roter Traminer','Picpoul'
|
66 |
+
]
|
67 |
+
Red = ['Portuguese Red', 'Pinot Noir', 'Tempranillo-Merlot', 'Frappato', 'Cabernet Sauvignon',
|
68 |
+
'Nerello Mascalese', 'Malbec', 'Tempranillo Blend', 'Meritage', 'Red Blend', 'Merlot',
|
69 |
+
"Nero d'Avola", 'Gamay', 'Primitivo', 'Sangiovese', 'Cabernet Franc', 'Bordeaux-style Red Blend',
|
70 |
+
'Aglianico', 'Petite Sirah', 'Touriga Nacional', 'Carmenère', 'Rosso', 'Shiraz-Cabernet Sauvignon',
|
71 |
+
'Barbera', 'Rhône-style Red Blend', 'Graciano', 'Tannat-Cabernet', 'Sauvignon', 'Sangiovese Grosso',
|
72 |
+
'Bonarda', 'Shiraz', 'Montepulciano', 'Grenache', 'Syrah', 'Nebbiolo', 'Blaufränkisch', 'Carignan-Grenache',
|
73 |
+
'Sagrantino', 'Cabernet Sauvignon-Syrah', 'Tempranillo','Mencía', 'Zweigelt', 'Cannonau', 'Dolcetto',
|
74 |
+
'Garnacha Tintorera', 'Pinot Nero', 'Pinotage', 'Syrah-Grenache', 'Antão Vaz', 'Cabernet Sauvignon-Carmenère',
|
75 |
+
'Tinta Miúda', 'Monastrell', 'Merlot-Malbec', 'Cabernet Sauvignon-Merlot', 'Merlot-Argaman', 'Garnacha',
|
76 |
+
'Negroamaro', 'Mourvèdre', 'Syrah-Cabernet', 'Tannat', 'Cabernet Sauvignon-Sangiovese', 'Austrian Red Blend',
|
77 |
+
'Teroldego', 'Baga','Pinot Noir-Gamay', 'Cinsault', 'Corvina, Rondinella, Molinara', 'Tannat-Syrah', 'Charbono',
|
78 |
+
'Provence red blend', 'Claret','Malbec-Merlot', 'Monastrell-Syrah', 'Malbec-Tannat', 'Malbec-Cabernet Franc',
|
79 |
+
'Tinta de Toro', 'Cabernet Moravia', 'Chambourcin', 'Nero di Troia', 'Cesanese', 'Lagrein', 'Tinta Fina', 'St. Laurent',
|
80 |
+
'Cabernet Sauvignon-Shiraz', 'Syrah-Cabernet Sauvignon', 'Pugnitello', 'Touriga Nacional Blend', 'Tinta Roriz',
|
81 |
+
'Cabernet Franc-Cabernet Sauvignon', 'Grenache-Syrah', 'Tempranillo-Cabernet Sauvignon', 'Merlot-Cabernet Franc',
|
82 |
+
'Syrah-Petite Sirah', 'Cabernet Blend', 'Maturana', 'Magliocco', 'Gamay Noir', 'Spätburgunder', 'Plavac Mali',
|
83 |
+
'Lemberger', 'Saperavi', 'Dornfelder', 'Ojaleshi', 'Mondeuse', 'Perricone', 'Syrah-Merlot', 'Cabernet Sauvignon-Malbec',
|
84 |
+
'Tinto Fino', 'Malbec-Cabernet Sauvignon','Carignano', 'Cabernet Franc-Merlot',
|
85 |
+
'Syrah-Petit Verdot', 'Syrah-Mourvèdre', 'Shiraz-Grenache', 'Grenache-Carignan', 'Malbec-Syrah',
|
86 |
+
'Cabernet Sauvignon-Tempranillo', 'Carignan', 'Cabernet-Syrah', 'Merlot-Cabernet Sauvignon',
|
87 |
+
'Mourvèdre-Syrah', 'Negrette', 'Tinta Barroca', 'Merlot-Tannat','Castelão',
|
88 |
+
'Grenache Blend', 'Sangiovese Cabernet', 'Touriga Nacional-Cabernet Sauvignon', 'Cabernet Sauvignon-Cabernet Franc',
|
89 |
+
'Baco Noir', 'Tempranillo-Tannat', 'Touriga Franca', 'Barbera-Nebbiolo', 'Prieto Picudo', 'Gaglioppo', 'Carignane',
|
90 |
+
'Tannat-Merlot', 'Nerello Cappuccio', 'Counoise', 'Mazuelo', 'Tinta del Pais', 'Vranec', 'Mavrud', 'Cabernet',
|
91 |
+
'Grenache-Mourvèdre', 'Forcallà', 'Syrah-Tempranillo', 'Cabernet Sauvignon-Barbera', 'Merlot-Cabernet', 'Jaen',
|
92 |
+
'Tinta del Toro', 'Prunelard', 'Garnacha-Syrah', 'Rufete', 'Tempranillo-Shiraz','Mansois',
|
93 |
+
'Mataro', 'Tinta Cao', 'Blauer Portugieser', 'Groppello', 'Poulsard', 'Grenache-Shiraz', 'Baga-Touriga Nacional',
|
94 |
+
'Carineña', 'Ciliegiolo', 'Cabernet Sauvignon-Merlot-Shiraz', 'Sciaccerellu', 'Alicante', 'Rosenmuskateller',
|
95 |
+
'Malbec-Cabernet', 'Touriga', 'Carmenère-Syrah', 'Mavroudi', 'Pinot Blanc-Pinot Noir', 'Tinto Velasco', 'Kadarka',
|
96 |
+
'Sangiovese-Syrah', 'Tannat-Cabernet Franc', 'Fer Servadou', 'Mission', 'Kekfrankos', 'Blauburgunder', 'Marquette',
|
97 |
+
'Romorantin', 'Braucol', 'Cabernet Franc-Malbec', 'Pallagrello Nero', 'Rebula', 'Vespolina', 'Shiraz-Malbec',
|
98 |
+
'Rebo', 'Tempranillo-Malbec', 'Trousseau', 'Bacchus', 'Syrah-Malbec', 'Syrah-Cabernet Franc', 'Cariñena-Garnacha',
|
99 |
+
'Sideritis','Rara Neagra', 'Molinara', 'Abouriou', 'Nielluciu', 'Malbec-Bonarda', 'Garnacha-Monastrell', 'Souzao',
|
100 |
+
'Tinta Francisca', 'Malvasia Nera', 'Listán Negro', 'Pinotage-Merlot', 'Jacquez', 'Carignan-Syrah', 'Mavrotragano',
|
101 |
+
'Bovale', 'Frankovka', 'Garnacha Blend', 'Merlot-Shiraz', 'Malbec Blend', 'Merlot-Syrah', 'Babić', 'Yapincak',
|
102 |
+
'Mandilaria', 'Saperavi-Merlot', 'Teroldego Rotaliano', 'Garnacha-Tempranillo','Vermentino Nero',
|
103 |
+
'Albarossa', 'Cabernet Sauvignon Grenache', 'Black Monukka', 'Merlot-Grenache', 'Vranac', 'Tempranillo-Syrah',
|
104 |
+
'Boğazkere', 'Tinta Amarela', 'Tinta Negra Mole', 'Chelois', 'Shiraz-Tempranillo', 'Biancale', 'Syrah-Bonarda',
|
105 |
+
'Durif', 'Franconia', 'Malbec-Tempranillo', 'Monastrell-Petit Verdot', 'Sirica', 'Espadeiro', 'Blatina', 'Karalahna',
|
106 |
+
'Garnacha-Cabernet', 'Garnacha-Cariñena', 'Cabernet Franc-Lemberger', 'Shiraz-Mourvèdre', 'Mavrokalavryta', 'Favorita',
|
107 |
+
'Babosa Negro', 'Dafni', 'Petit Courbu', 'Kotsifali', 'Parraleta', 'Otskhanuri Sapere', 'Trollinger',
|
108 |
+
'Tsapournakos', 'Francisa', 'Kuntra', 'Pignolo', 'Schwartzriesling','Sousão', 'Feteasca Neagra', 'Kinali Yapincak',
|
109 |
+
'Kalecik Karasi', 'Karasakiz', 'Raboso', 'Trepat', 'Freisa', 'Trincadeira', 'Melnik', 'Argaman', 'Piedirosso',
|
110 |
+
'Marawi', 'Çalkarası', 'Tinta Francisca', 'Vidadillo', 'Other', 'Cabernet Pfeffer', 'Roviello', 'Colorino',
|
111 |
+
'Tinta Madeira', 'Centesimino', 'Ramisco', 'Gamza', 'Bobal-Cabernet Sauvignon',
|
112 |
+
'Petit Verdot', 'Zinfandel', 'G-S-M', 'Monica', 'Cabernet Merlot', 'Cabernet Franc-Carmenère',
|
113 |
+
'Grenache Noir', 'Xinomavro', 'Petite Verdot', 'Tempranillo-Garnacha', 'Carmenère-Cabernet Sauvignon',
|
114 |
+
'Sangiovese-Cabernet Sauvignon', 'Shiraz-Cabernet', 'Syrah-Grenache-Viognier', 'Cabernet-Shiraz', 'Syrah-Carignan',
|
115 |
+
'Cabernet-Malbec', 'Merlot-Petite Verdot', 'Duras', 'Aragonês', 'Agiorgitiko', 'Aragonez', 'Alfrocheiro', 'Corvina',
|
116 |
+
'Alicante Bouschet', 'Tinto del Pais', 'Bobal', 'Susumaniello', 'Grolleau', 'Canaiolo', 'Bastardo', 'Tintilia',
|
117 |
+
'St. Vincent', 'Caprettone','Black Muscat','Muscadine','Syrah-Viognier', 'Shiraz-Viognier', 'Carcajolu',
|
118 |
+
'Marselan', 'Malbec-Petit Verdot', 'Grignolino', 'Pinot Noir-Syrah', 'Malbec-Carménère','País', 'Alvarelhão',
|
119 |
+
'Okuzgozu', 'Tintilia','Mavrodaphne','Tintilia ',
|
120 |
+
]
|
121 |
+
|
122 |
+
Rosé = ['Rosé', 'Rosato', 'Rosado','Portuguese Rosé', 'Prugnolo Gentile']
|
123 |
+
|
124 |
+
Sparkling = ['Champagne Blend', 'Prosecco', 'Sparkling Blend','Portuguese Sparkling',
|
125 |
+
'Cerceal', 'Lambrusco','Lambrusco di Sorbara','Lambrusco Grasparossa',
|
126 |
+
'Torbato', 'Moscadello', 'Passerina', 'Brachetto', 'Ekigaïna', 'Picolit',
|
127 |
+
'Sacy', 'Moscatel Roxo', 'Debit','Moscato', 'Valdiguié', 'Casavecchia',
|
128 |
+
'Lambrusco Salamino', 'Moscato Rosa']
|
129 |
+
|
130 |
+
Fortified = ['Sherry', 'Pedro Ximénez', 'White Port', 'Tokaji','Port']
|
131 |
+
|
132 |
+
red_dict = {variety: 'Red' for variety in Red}
|
133 |
+
white_dict = {variety: 'White' for variety in White}
|
134 |
+
rose_dict = {variety: 'Rosé' for variety in Rosé}
|
135 |
+
sparkling_dict = {variety: 'Sparkling' for variety in Sparkling}
|
136 |
+
fortified_dict = {variety: 'Fortified' for variety in Fortified}
|
137 |
+
wine_dict = {**red_dict, **white_dict, **rose_dict, **sparkling_dict, **fortified_dict}
|
138 |
+
|
139 |
+
# Remove duplicates
|
140 |
+
df = df.drop_duplicates(subset='description', keep="first")
|
141 |
+
|
142 |
+
# Apply wine type dict map
|
143 |
+
df['type'] = df['variety'].map(wine_dict)
|
144 |
+
|
145 |
+
# Fix one missing value:
|
146 |
+
df['type'].fillna('Red', inplace=True)
|
147 |
+
|
148 |
+
# Rename cols
|
149 |
+
df = df.rename(columns={'country':'Country',
|
150 |
+
'description':'Tasting notes',
|
151 |
+
'designation':'Designation',
|
152 |
+
'points':'Score',
|
153 |
+
'price': 'Price',
|
154 |
+
'province':'Province',
|
155 |
+
'region_1': 'Region',
|
156 |
+
'title':'Title',
|
157 |
+
'variety':'Variety',
|
158 |
+
'winery':'Winery',
|
159 |
+
'embeddings':'embeddings',
|
160 |
+
'type':'Type'})
|
161 |
+
|
162 |
+
return df
|