uncanny-faces / app.py
pcuenq's picture
pcuenq HF staff
Initial version
ed82520
raw
history blame
4.74 kB
import gradio as gr
import torch
import dlib
import numpy as np
import PIL
# Only used to convert to gray, could do it differently and remove this big dependency
import cv2
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import UniPCMultistepScheduler
from spiga.inference.config import ModelConfig
from spiga.inference.framework import SPIGAFramework
import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches
# Bounding boxes
face_detector = dlib.get_frontal_face_detector()
# Landmark extraction
spiga_extractor = SPIGAFramework(ModelConfig("300wpublic"))
uncanny_controlnet = ControlNetModel.from_pretrained(
"multimodalart/uncannyfaces_25K", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1-base", controlnet=uncanny_controlnet, safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
# Generator seed,
generator = torch.manual_seed(0)
def get_bounding_box(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
face = face_detector(gray)[0]
bbox = [face.left(), face.top(), face.width(), face.height()]
return bbox
def get_landmarks(image, bbox):
features = spiga_extractor.inference(image, [bbox])
return features['landmarks'][0]
def get_patch(landmarks, color='lime', closed=False):
contour = landmarks
ops = [Path.MOVETO] + [Path.LINETO]*(len(contour)-1)
facecolor = (0, 0, 0, 0) # Transparent fill color, if open
if closed:
contour.append(contour[0])
ops.append(Path.CLOSEPOLY)
facecolor = color
path = Path(contour, ops)
return patches.PathPatch(path, facecolor=facecolor, edgecolor=color, lw=4)
def conditioning_from_landmarks(landmarks, size=512):
# Precisely control output image size
dpi = 72
fig, ax = plt.subplots(1, figsize=[size/dpi, size/dpi], tight_layout={'pad':0})
fig.set_dpi(dpi)
black = np.zeros((size, size, 3))
ax.imshow(black)
face_patch = get_patch(landmarks[0:17])
l_eyebrow = get_patch(landmarks[17:22], color='yellow')
r_eyebrow = get_patch(landmarks[22:27], color='yellow')
nose_v = get_patch(landmarks[27:31], color='orange')
nose_h = get_patch(landmarks[31:36], color='orange')
l_eye = get_patch(landmarks[36:42], color='magenta', closed=True)
r_eye = get_patch(landmarks[42:48], color='magenta', closed=True)
outer_lips = get_patch(landmarks[48:60], color='cyan', closed=True)
inner_lips = get_patch(landmarks[60:68], color='blue', closed=True)
ax.add_patch(face_patch)
ax.add_patch(l_eyebrow)
ax.add_patch(r_eyebrow)
ax.add_patch(nose_v)
ax.add_patch(nose_h)
ax.add_patch(l_eye)
ax.add_patch(r_eye)
ax.add_patch(outer_lips)
ax.add_patch(inner_lips)
plt.axis('off')
fig.canvas.draw()
buffer, (width, height) = fig.canvas.print_to_buffer()
assert width == height
assert width == size
buffer = np.frombuffer(buffer, np.uint8).reshape((height, width, 4))
buffer = buffer[:, :, 0:3]
plt.close(fig)
return PIL.Image.fromarray(buffer)
def get_conditioning(image):
# Steps: convert to BGR and then:
# - Retrieve bounding box using `dlib`
# - Obtain landmarks using `spiga`
# - Create conditioning image with custom `matplotlib` code
# TODO: error if bbox is too small
image.thumbnail((512, 512))
image = np.array(image)
image = image[:, :, ::-1]
bbox = get_bounding_box(image)
landmarks = get_landmarks(image, bbox)
spiga_seg = conditioning_from_landmarks(landmarks)
return spiga_seg
def generate_images(image, prompt):
conditioning = get_conditioning(image)
output = pipe(
prompt,
conditioning,
generator=generator,
num_images_per_prompt=3,
num_inference_steps=20,
)
return [conditioning] + output.images
gr.Interface(
generate_images,
inputs=[
gr.Image(type="pil"),
gr.Textbox(
label="Enter your prompt",
max_lines=1,
placeholder="best quality, extremely detailed",
),
],
outputs=gr.Gallery().style(grid=[2], height="auto"),
title="Generate controlled outputs with ControlNet and Stable Diffusion. ",
description="This Space uses pose estimated lines as the additional conditioning.",
# "happy zombie" instead of "young woman" works great too :)
examples=[["pedro-512.jpg", "Highly detailed photograph of young woman smiling, with palm trees in the background"]],
allow_flagging=False,
).launch(enable_queue=True)