Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- requirements.txt +4 -0
- streamlit.py +217 -0
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gTTS==2.3.2
|
2 |
+
openai==0.28.0
|
3 |
+
pygame==2.5.1
|
4 |
+
SpeechRecognition==3.10.0
|
streamlit.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
from gtts import gTTS
|
3 |
+
import speech_recognition as sr
|
4 |
+
import streamlit as st
|
5 |
+
import random
|
6 |
+
import time
|
7 |
+
import pygame
|
8 |
+
import io
|
9 |
+
|
10 |
+
# Set up your OpenAI API key
|
11 |
+
openai.api_key = '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'
|
12 |
+
|
13 |
+
# Function to get technical keywords using OpenAI
|
14 |
+
def get_technical_keywords(job_description, skills):
|
15 |
+
conversation = [
|
16 |
+
{"role": "system", "content": "You are a helpful assistant that extracts technical keywords."},
|
17 |
+
{"role": "user", "content": f"Extract technical keywords from job description: {job_description}\nSkills: {skills}"}
|
18 |
+
]
|
19 |
+
|
20 |
+
response = openai.ChatCompletion.create(
|
21 |
+
model="gpt-3.5-turbo-0613",
|
22 |
+
messages=conversation
|
23 |
+
)
|
24 |
+
|
25 |
+
extracted_keywords = response.choices[0].message.content.strip()
|
26 |
+
return extracted_keywords
|
27 |
+
|
28 |
+
# Function to format and display keywords
|
29 |
+
def display_keywords(keywords):
|
30 |
+
st.subheader("Extracted Keywords:")
|
31 |
+
st.write(keywords)
|
32 |
+
|
33 |
+
# Function to generate a single technical question based on a keyword and job role
|
34 |
+
def generate_question(keyword, job_role):
|
35 |
+
conversation = [
|
36 |
+
{"role": "system", "content": "You are a helpful assistant that generates technical questions."},
|
37 |
+
{"role": "user", "content": f"Generate a technical question for the job role of {job_role} based on the keyword: {keyword}"}
|
38 |
+
]
|
39 |
+
|
40 |
+
response = openai.ChatCompletion.create(
|
41 |
+
model="gpt-3.5-turbo-16k-0613",
|
42 |
+
messages=conversation,
|
43 |
+
max_tokens=1000 # Adjust the token limit as needed
|
44 |
+
)
|
45 |
+
|
46 |
+
generated_question = response.choices[0].message.content.strip()
|
47 |
+
return generated_question
|
48 |
+
|
49 |
+
# Function to format and display feedback
|
50 |
+
def display_feedback(feedback):
|
51 |
+
st.subheader("Feedback:")
|
52 |
+
st.write(feedback)
|
53 |
+
|
54 |
+
# Function to generate a follow-up question based on the user's answer using ChatGPT
|
55 |
+
def get_follow_up_question(user_answer):
|
56 |
+
conversation = [
|
57 |
+
{"role": "system", "content": "You are a helpful assistant that generates follow-up questions."},
|
58 |
+
{"role": "user", "content": f"Generate a follow-up question based on the user's answer: {user_answer}"}
|
59 |
+
]
|
60 |
+
|
61 |
+
response = openai.ChatCompletion.create(
|
62 |
+
model="gpt-3.5-turbo-0613",
|
63 |
+
messages=conversation,
|
64 |
+
max_tokens=1000 # Adjust the token limit as needed
|
65 |
+
)
|
66 |
+
|
67 |
+
follow_up_question = response.choices[0].message.content.strip()
|
68 |
+
return follow_up_question
|
69 |
+
|
70 |
+
# Modify the ask_question function to save the audio in memory
|
71 |
+
def ask_question(question):
|
72 |
+
mp3_data = io.BytesIO() # Create an in-memory stream
|
73 |
+
tts = gTTS(text=question, lang='en')
|
74 |
+
tts.write_to_fp(mp3_data)
|
75 |
+
mp3_data.seek(0) # Rewind the stream to the beginning
|
76 |
+
|
77 |
+
pygame.mixer.init()
|
78 |
+
pygame.mixer.music.load(mp3_data)
|
79 |
+
pygame.mixer.music.play()
|
80 |
+
|
81 |
+
# Wait for the audio to finish playing
|
82 |
+
while pygame.mixer.music.get_busy():
|
83 |
+
pygame.time.Clock().tick(10) # Adjust the tick rate as needed
|
84 |
+
|
85 |
+
# Function to get user's answer via speech-to-text
|
86 |
+
def get_user_answer():
|
87 |
+
recognizer = sr.Recognizer()
|
88 |
+
with sr.Microphone() as source:
|
89 |
+
st.text("Please answer the question:")
|
90 |
+
audio = recognizer.listen(source, timeout=None) # No timeout, wait until user finishes speaking
|
91 |
+
try:
|
92 |
+
answer = recognizer.recognize_google(audio, show_all=True)
|
93 |
+
if 'alternative' in answer:
|
94 |
+
answer = answer['alternative'][0]['transcript']
|
95 |
+
return answer
|
96 |
+
except Exception as e:
|
97 |
+
st.error(f"Error: {str(e)}")
|
98 |
+
return None
|
99 |
+
|
100 |
+
# Function to get feedback on the user's answer
|
101 |
+
def get_feedback(user_answer):
|
102 |
+
conversation = [
|
103 |
+
{"role": "system", "content": "You are a helpful assistant that provides feedback on user answers."},
|
104 |
+
{"role": "user", "content": f"Provide feedback on the user's answer based on clarity, confidence, content, effectiveness, quantification, and usage of STAR framework: {user_answer}"}
|
105 |
+
]
|
106 |
+
|
107 |
+
response = openai.ChatCompletion.create(
|
108 |
+
model="gpt-3.5-turbo-0613",
|
109 |
+
messages=conversation,
|
110 |
+
max_tokens=1000 # Adjust the token limit as needed
|
111 |
+
)
|
112 |
+
|
113 |
+
feedback = response.choices[0].message.content.strip()
|
114 |
+
return feedback
|
115 |
+
|
116 |
+
# Function to evaluate whether the answer is technically correct using ChatGPT
|
117 |
+
def evaluate_answer(answer):
|
118 |
+
conversation = [
|
119 |
+
{"role": "system", "content": "You are a helpful assistant that evaluates the technical correctness of the answer."},
|
120 |
+
{"role": "user", "content": f"Evaluate whether the following answer is technically correct: {answer}"}
|
121 |
+
]
|
122 |
+
|
123 |
+
response = openai.ChatCompletion.create(
|
124 |
+
model="gpt-3.5-turbo-0613",
|
125 |
+
messages=conversation,
|
126 |
+
max_tokens=1000 # Adjust the token limit as needed
|
127 |
+
)
|
128 |
+
|
129 |
+
evaluation_result = response.choices[0].message.content.strip()
|
130 |
+
return evaluation_result
|
131 |
+
|
132 |
+
# Function to conduct the interview in an infinite loop
|
133 |
+
def conduct_interview_loop(keywords_list, job_role):
|
134 |
+
while True:
|
135 |
+
random.shuffle(keywords_list) # Shuffle the keywords
|
136 |
+
|
137 |
+
for keyword in keywords_list:
|
138 |
+
# Generate a question for the keyword and job role
|
139 |
+
question = generate_question(keyword, job_role)
|
140 |
+
|
141 |
+
# Display the question in the GUI
|
142 |
+
st.subheader("Question:")
|
143 |
+
st.write(question)
|
144 |
+
|
145 |
+
# Ask the question via audio with medium speed
|
146 |
+
ask_question(question)
|
147 |
+
|
148 |
+
# Get the user's answer
|
149 |
+
user_answer = get_user_answer()
|
150 |
+
if user_answer is not None:
|
151 |
+
# Display the user's answer in the GUI
|
152 |
+
st.subheader("User's Answer:")
|
153 |
+
st.write(user_answer)
|
154 |
+
|
155 |
+
# Provide feedback on the user's answer
|
156 |
+
feedback = get_feedback(user_answer)
|
157 |
+
|
158 |
+
# Display the feedback in the GUI
|
159 |
+
display_feedback(feedback)
|
160 |
+
|
161 |
+
# Evaluate whether the answer is technically correct
|
162 |
+
evaluation_result = evaluate_answer(user_answer)
|
163 |
+
|
164 |
+
# Display the evaluation result in the GUI
|
165 |
+
st.subheader("Evaluation Result:")
|
166 |
+
st.write(evaluation_result)
|
167 |
+
|
168 |
+
# Wait for the user to read feedback
|
169 |
+
time.sleep(5) # Adjust the delay time (in seconds) as needed
|
170 |
+
|
171 |
+
# Process user's answer using OpenAI
|
172 |
+
follow_up_question = get_follow_up_question(user_answer)
|
173 |
+
|
174 |
+
if follow_up_question:
|
175 |
+
# Display and ask the follow-up question
|
176 |
+
st.subheader("Follow-up Question:")
|
177 |
+
st.write(follow_up_question)
|
178 |
+
ask_question(follow_up_question)
|
179 |
+
|
180 |
+
# Get the user's answer to the follow-up question
|
181 |
+
user_follow_up_answer = get_user_answer()
|
182 |
+
if user_follow_up_answer is not None:
|
183 |
+
# Display the user's answer in the GUI
|
184 |
+
st.subheader("User's Follow-up Answer:")
|
185 |
+
st.write(user_follow_up_answer)
|
186 |
+
|
187 |
+
# Allow some time for the user to finish their answer (optional)
|
188 |
+
time.sleep(5) # Adjust the delay time (in seconds) as needed
|
189 |
+
|
190 |
+
# Define Streamlit app
|
191 |
+
def main():
|
192 |
+
st.title("Interview Chatbot")
|
193 |
+
|
194 |
+
# Create job description input
|
195 |
+
job_description = st.text_area("Job Description:")
|
196 |
+
|
197 |
+
# Create technical skills input
|
198 |
+
skills = st.text_area("Technical Skills:")
|
199 |
+
|
200 |
+
# Create job role input
|
201 |
+
job_role = st.text_input("Job Role:")
|
202 |
+
|
203 |
+
# Create submit button
|
204 |
+
if st.button("Submit"):
|
205 |
+
# Step 2: Extract technical keywords
|
206 |
+
keywords = get_technical_keywords(job_description, skills)
|
207 |
+
|
208 |
+
# Display extracted technical keywords
|
209 |
+
display_keywords(keywords)
|
210 |
+
|
211 |
+
# Split keywords and conduct the interview
|
212 |
+
keywords_list = keywords.split(", ")
|
213 |
+
conduct_interview_loop(keywords_list, job_role)
|
214 |
+
|
215 |
+
# Define Streamlit app
|
216 |
+
if __name__ == '__main__':
|
217 |
+
main()
|