Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from openai import OpenAI
|
| 2 |
+
from datetime import datetime, timedelta
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import os
|
| 5 |
+
import re
|
| 6 |
+
import requests
|
| 7 |
+
|
| 8 |
+
api_key = os.getenv("OPENAIKEY")
|
| 9 |
+
client = OpenAI(api_key=api_key)
|
| 10 |
+
|
| 11 |
+
auth_token = os.getenv("DB_AUTH_TOKEN")
|
| 12 |
+
|
| 13 |
+
def repo_get_all_employees_from_database():
|
| 14 |
+
url = "https://api.airtable.com/v0/appopGmlHujYnd6Vw/Interviewers?maxRecords=100&view=Grid%20view"
|
| 15 |
+
headers = {
|
| 16 |
+
"Authorization": auth_token
|
| 17 |
+
}
|
| 18 |
+
response = requests.get(url, headers=headers)
|
| 19 |
+
records = response.json()
|
| 20 |
+
# print("records:")
|
| 21 |
+
# print(records)
|
| 22 |
+
records_list = records['records']
|
| 23 |
+
employees_list = []
|
| 24 |
+
for record in records_list:
|
| 25 |
+
employee = record["fields"]
|
| 26 |
+
employees_list.append(employee)
|
| 27 |
+
|
| 28 |
+
return employees_list
|
| 29 |
+
|
| 30 |
+
def predict(message, history):
|
| 31 |
+
|
| 32 |
+
# print("message:")
|
| 33 |
+
# print(message)
|
| 34 |
+
|
| 35 |
+
history_openai_format = []
|
| 36 |
+
|
| 37 |
+
# first_message = len(history) == 0
|
| 38 |
+
|
| 39 |
+
system_content = """
|
| 40 |
+
You are a computing system that strictly and directly follows all instructions from the user..
|
| 41 |
+
"""
|
| 42 |
+
history_openai_format.append({"role": "system", "content": system_content})
|
| 43 |
+
|
| 44 |
+
pattern = r"For conducting an interview I need (\d+) employee.*start time is (.*), duration (\d+) hour"
|
| 45 |
+
|
| 46 |
+
data = repo_get_all_employees_from_database()
|
| 47 |
+
|
| 48 |
+
prompt = '''
|
| 49 |
+
{data}
|
| 50 |
+
###
|
| 51 |
+
Above is employees data in json format.
|
| 52 |
+
{message}
|
| 53 |
+
'''.format(data=data, message=message)
|
| 54 |
+
|
| 55 |
+
# print("prompt:")
|
| 56 |
+
# print(prompt)
|
| 57 |
+
|
| 58 |
+
match = re.search(pattern, message)
|
| 59 |
+
|
| 60 |
+
# print("match:")
|
| 61 |
+
# print(match)
|
| 62 |
+
|
| 63 |
+
if match:
|
| 64 |
+
num_employees = int(match.group(1))
|
| 65 |
+
duration = int(match.group(3))
|
| 66 |
+
start_time = datetime.strptime(match.group(2), "%B %d %Y %I %p")
|
| 67 |
+
end_time = end_time = start_time + timedelta(hours=duration)
|
| 68 |
+
|
| 69 |
+
date_time = '''
|
| 70 |
+
"start_date_time": "{start_time}", "end_date_time": "{end_time}"
|
| 71 |
+
'''.format(start_time=start_time, end_time=end_time)
|
| 72 |
+
|
| 73 |
+
prompt = '''
|
| 74 |
+
{data}
|
| 75 |
+
###
|
| 76 |
+
Above is employees data in json format.
|
| 77 |
+
Please choose {num_employees} employee with the lowest "interviews_conducted" value but whose "busy_dat_time_slots" doesn't contain the "given_date_time_slot" which is: {date_time}.
|
| 78 |
+
You should NOT output any Python code.
|
| 79 |
+
Lets think step-by-step:
|
| 80 |
+
1. Remove the employees whose "busy_date_time_slots" CONTAINS the "given_date_time_slot" specified above. Provide a list of names of remaining employees.
|
| 81 |
+
2. Double check your filtration. It's very important NOT to include into the remained employees list an employee whose "busy_date_time_slots" CONTAINS the "given_date_time_slot" . Type a "given_date_time_slot" value and then check that no one of remaining employees has no "given_date_time_slot" value in "busy_dat_time_slots". If someone contains - replase him.
|
| 82 |
+
3. Provide a list of names of remaining employees along with their "interviews_conducted" values and choose {num_employees} employee with the lowest "interviews_conducted" value.
|
| 83 |
+
4. Check previous step if you really chose an employee with the lowest "interviews_conducted" value.
|
| 84 |
+
5. At the end print ids and names of finally selected employees in json format. Please remember that in your output should be maximum {num_employees} employee.
|
| 85 |
+
'''.format(data=data, date_time=date_time, num_employees=num_employees)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# print("prompt:")
|
| 89 |
+
# print(prompt)
|
| 90 |
+
|
| 91 |
+
# print("history:")
|
| 92 |
+
# print(history)
|
| 93 |
+
|
| 94 |
+
for human, assistant in history:
|
| 95 |
+
history_openai_format.append({"role": "user", "content": human })
|
| 96 |
+
history_openai_format.append({"role": "assistant", "content": assistant})
|
| 97 |
+
history_openai_format.append({"role": "user", "content": prompt})
|
| 98 |
+
|
| 99 |
+
model = "gpt-3.5-turbo"
|
| 100 |
+
if ("switch to gpt-3.5" in message.lower()):
|
| 101 |
+
model = "gpt-3.5-turbo"
|
| 102 |
+
print("Switched to:")
|
| 103 |
+
print(model)
|
| 104 |
+
|
| 105 |
+
if ("switch to gpt-4" in message.lower()):
|
| 106 |
+
model = "gpt-4"
|
| 107 |
+
print("Switched to:")
|
| 108 |
+
print(model)
|
| 109 |
+
|
| 110 |
+
print("Actual model:")
|
| 111 |
+
print(model)
|
| 112 |
+
|
| 113 |
+
response = client.chat.completions.create(
|
| 114 |
+
model="gpt-4",
|
| 115 |
+
messages= history_openai_format,
|
| 116 |
+
temperature=0,
|
| 117 |
+
stream=True)
|
| 118 |
+
|
| 119 |
+
partial_message = ""
|
| 120 |
+
for chunk in response:
|
| 121 |
+
if chunk.choices[0].delta.content is not None:
|
| 122 |
+
partial_message = partial_message + chunk.choices[0].delta.content
|
| 123 |
+
yield partial_message
|
| 124 |
+
|
| 125 |
+
pre_configured_promt = "For conducting an interview I need 1 employee in given time slot: start time is March 11 2024 2 pm, duration 1 hour"
|
| 126 |
+
|
| 127 |
+
description = '''
|
| 128 |
+
# AI Interview Team Assistant | Empowered by Godel Technologies AI \n
|
| 129 |
+
\n
|
| 130 |
+
This is an AI Interview Team Assistant. You can ask him any questions about recruiting a team for an interview.\n
|
| 131 |
+
\n
|
| 132 |
+
You can send any regular prompts you wish or pre-configured Chain-of-Thought prompts.\n
|
| 133 |
+
To trigger pre-configured prompt you have to craft a prompt with next structure:
|
| 134 |
+
- "{pre_configured_promt}"
|
| 135 |
+
'''.format(pre_configured_promt=pre_configured_promt)
|
| 136 |
+
|
| 137 |
+
examples = [pre_configured_promt]
|
| 138 |
+
additional_inputs = [gr.Dropdown(value=["gpt-3-turbo", "gpt-4"], label="Model")]
|
| 139 |
+
gr.ChatInterface(predict, examples=[examples], description=description).launch()
|