rag-gradio / app.py
pavvloff's picture
Update app.py
fe6de2a
raw
history blame
5.8 kB
"""
Credit to Derek Thomas, derek@huggingface.co
"""
import subprocess
subprocess.run(["pip", "install", "--upgrade", "transformers[torch,sentencepiece]==4.34.1"])
import logging
from pathlib import Path
from time import perf_counter
import gradio as gr
from jinja2 import Environment, FileSystemLoader
from backend.query_llm import generate_hf, generate_openai
from backend.semantic_search import tables, retrievers, trim, rerank_documents
VECTOR_COLUMN_NAME = "embedding"
TEXT_COLUMN_NAME = "text"
proj_dir = Path(__file__).parent
# Setting up the logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set up the template environment with the templates directory
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
# Load the templates directly from the environment
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')
# Examples
examples = ['What is the capital of China?',
'Why is the sky blue?',
'Who won the mens world cup in 2014?', ]
def add_text(history, text):
history = [] if history is None else history
history.append((text, None))
return history, gr.Textbox(value="", interactive=False)
def api_call(history, api_kind, table_name, openai_key, rerank):
last = None
for output in bot(history, api_kind, table_name, openai_key, rerank):
last = output
return str(last)
def bot(history, api_kind, table_name, openai_key, rerank):
top_k_rank = 4
query = history[-1][0]
if not query:
gr.Warning("Please submit a non-empty string as a prompt")
raise ValueError("Empty string was submitted")
if table_name not in tables:
gr.Warning(f"Table name {table_name} is incorrect")
raise ValueError(f"Table name {table_name} is incorrect")
logger.warning('Retrieving documents...')
logger.warning(f"{openai_key}")
# Retrieve documents relevant to query
document_start = perf_counter()
retriever_name = table_name.split('_')[1]
query_vec = retrievers[retriever_name](query, openai_key)
documents = []
if rerank:
# Search for 2x the documents and then rerank
documents = tables[table_name].search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank * 2).to_list()
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
documents = rerank_documents(query, documents)[:top_k_rank]
else:
documents = tables[table_name].search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
document_time = perf_counter() - document_start
logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')
if api_kind == "HuggingFace":
generate_fn = generate_hf
elif api_kind == "OpenAI":
max_length = 3000
generate_fn = lambda prompt, history: generate_openai(prompt, history, key = openai_key)
# Trim the documents to fit into the context length
documents = [trim(d, max_length // len(documents)) for d in documents]
elif api_kind is None:
gr.Warning("API name was not provided")
raise ValueError("API name was not provided")
else:
gr.Warning(f"API {api_kind} is not supported")
raise ValueError(f"API {api_kind} is not supported")
# Create Prompt
prompt = template.render(documents=documents, query=query)
prompt_html = template_html.render(documents=documents, query=query)
history[-1][1] = ""
for character in generate_fn(prompt, history[:-1]):
history[-1][1] = character
yield history, prompt_html
with gr.Blocks() as demo:
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
bubble_full_width=False,
show_copy_button=True,
show_share_button=True,
)
with gr.Row():
txt = gr.Textbox(
scale=3,
show_label=False,
placeholder="Enter text and press enter",
container=False,
)
txt_btn = gr.Button(value="Submit text", scale=1)
api_kind = gr.Radio(choices=["HuggingFace", "OpenAI"], value="HuggingFace")
table_name = gr.Radio(choices = list(sorted(tables.keys())), value = 'files_MiniLM')
rerank = gr.Checkbox(value = False, label="Rerank using cross-encoders")
openai_key = gr.Textbox(max_lines=1, value = 'Your API key here', label="OpenAI API key")
prompt_html = gr.HTML()
# Turn off interactivity while generating if you click
txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, [chatbot, api_kind, table_name, openai_key, rerank], [chatbot, prompt_html])
# Turn it back on
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
# Turn off interactivity while generating if you hit enter
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, [chatbot, api_kind, table_name, openai_key, rerank], [chatbot, prompt_html])
# Turn it back on
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
# Examples
gr.Examples(examples, txt)
hidden_txt = gr.Textbox(visible=False)
hidden = gr.Button(value="Ignore", visible=False)
hidden.click(api_call, [chatbot, api_kind, table_name, openai_key, rerank], [hidden_txt])
demo.queue()
demo.launch(debug=True)