EMET / app.py
pavanc21's picture
Upload 4 files
c67dc89 verified
import torch
import torch.nn as nn
from torch.nn import functional as F
import gradio as gr # <--- The new UI library
# --- 1. CONFIGURATION (Must match training!) ---
batch_size = 64
block_size = 64
n_embd = 128
n_head = 4
n_layer = 4
dropout = 0.2
device = 'cpu' # We use CPU for the web app so it's compatible everywhere
# --- 2. THE BRAIN CODE (Your Custom Architecture) ---
class Head(nn.Module):
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B,T,C = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2, -1) * C**-0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.proj(out)
return self.dropout(out)
class FeedFoward(nn.Module):
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self, n_embd, n_head):
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedFoward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class GPTLanguageModel(nn.Module):
def __init__(self, vocab_size):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd)
self.lm_head = nn.Linear(n_embd, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
tok_emb = self.token_embedding_table(idx)
pos_emb = self.position_embedding_table(torch.arange(T, device=device))
x = tok_emb + pos_emb
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x)
return logits, None
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
idx_cond = idx[:, -block_size:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
# --- 3. LOAD RESOURCES ---
print("Loading model and vocabulary...")
# Load text to rebuild tokenizer
with open('input.txt', 'r', encoding='utf-8') as f:
text = f.read()
chars = sorted(list(set(text)))
vocab_size = len(chars)
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
# Load Model
model = GPTLanguageModel(vocab_size)
model.load_state_dict(torch.load('model.pt', map_location=device))
model.to(device)
model.eval()
# --- 4. DEFINE THE WEB FUNCTION ---
def generate_text(start_text):
if not start_text:
return "Please type something to start!"
try:
# Convert text to numbers
context = torch.tensor([encode(start_text)], dtype=torch.long, device=device)
# Ask AI to predict next 200 characters
output_ids = model.generate(context, max_new_tokens=200)
# Convert numbers back to text
full_response = decode(output_ids[0].tolist())
return full_response
except KeyError:
return "Error: You used a character the AI has never seen before."
# --- 5. LAUNCH THE INTERFACE ---
print("Launching Web App...")
interface = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(lines=2, placeholder="Type a starting word (e.g. 'Nano')..."),
outputs="text",
title="My Private AI",
description="An AI model trained from scratch on my own data."
)
interface.launch()