Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import json | |
import time | |
import hashlib | |
import requests | |
import argparse | |
import datetime | |
import numpy as np | |
import gradio as gr | |
from decord import VideoReader, cpu | |
from videollama2.constants import LOGDIR, NUM_FRAMES | |
from videollama2.conversation import (default_conversation, conv_templates,SeparatorStyle) | |
from videollama2.utils import (build_logger, server_error_msg, violates_moderation, moderation_msg) | |
logger = build_logger("gradio_web_server", "gradio_web_server.log") | |
headers = {"User-Agent": "Videollama2 Client"} | |
no_change_btn = gr.Button.update() | |
enable_btn = gr.Button.update(interactive=True) | |
disable_btn = gr.Button.update(interactive=False) | |
priority = { | |
"vicuna-13b": "aaaaaaa", | |
"koala-13b": "aaaaaab", | |
} | |
def get_conv_log_filename(): | |
t = datetime.datetime.now() | |
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json") | |
return name | |
def get_model_list(): | |
ret = requests.post(args.controller_url + "/refresh_all_workers") | |
assert ret.status_code == 200 | |
ret = requests.post(args.controller_url + "/list_models") | |
models = ret.json()["models"] | |
models.sort(key=lambda x: priority.get(x, x)) | |
logger.info(f"Models: {models}") | |
return models | |
get_window_url_params = """ | |
function() { | |
const params = new URLSearchParams(window.location.search); | |
url_params = Object.fromEntries(params); | |
console.log(url_params); | |
return url_params; | |
} | |
""" | |
def load_demo(url_params, request: gr.Request): | |
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}") | |
dropdown_update = gr.Dropdown.update(visible=True) | |
if "model" in url_params: | |
model = url_params["model"] | |
if model in models: | |
dropdown_update = gr.Dropdown.update( | |
value=model, visible=True) | |
state = default_conversation.copy() | |
return state, dropdown_update | |
def load_demo_refresh_model_list(request: gr.Request): | |
logger.info(f"load_demo. ip: {request.client.host}") | |
models = get_model_list() | |
state = default_conversation.copy() | |
dropdown_update = gr.Dropdown.update( | |
choices=models, | |
value=models[0] if len(models) > 0 else "" | |
) | |
return state, dropdown_update | |
def vote_last_response(state, vote_type, model_selector, request: gr.Request): | |
with open(get_conv_log_filename(), "a") as fout: | |
data = { | |
"tstamp": round(time.time(), 4), | |
"type": vote_type, | |
"model": model_selector, | |
"state": state.dict(), | |
"ip": request.client.host, | |
} | |
fout.write(json.dumps(data) + "\n") | |
def upvote_last_response(state, model_selector, request: gr.Request): | |
logger.info(f"upvote. ip: {request.client.host}") | |
vote_last_response(state, "upvote", model_selector, request) | |
return ("",) + (disable_btn,) * 3 | |
def downvote_last_response(state, model_selector, request: gr.Request): | |
logger.info(f"downvote. ip: {request.client.host}") | |
vote_last_response(state, "downvote", model_selector, request) | |
return ("",) + (disable_btn,) * 3 | |
def flag_last_response(state, model_selector, request: gr.Request): | |
logger.info(f"flag. ip: {request.client.host}") | |
vote_last_response(state, "flag", model_selector, request) | |
return ("",) + (disable_btn,) * 3 | |
def regenerate(state, image_process_mode, request: gr.Request): | |
logger.info(f"regenerate. ip: {request.client.host}") | |
state.messages[-1][-1] = None | |
prev_human_msg = state.messages[-2] | |
if type(prev_human_msg[1]) in (tuple, list): | |
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) | |
state.skip_next = False | |
# (state, chatbot, textbox, imagebox, videobox, upvote, downvote, flag, generate, clear) | |
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5 | |
def clear_history(request: gr.Request): | |
logger.info(f"clear_history. ip: {request.client.host}") | |
state = default_conversation.copy() | |
# (state, chatbot, textbox, imagebox, videobox, upvote, downvote, flag, generate, clear) | |
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5 | |
def add_text_ori(state, text, image, video, image_process_mode, request: gr.Request): | |
# note: imagebox itself is PIL object while videobox is filepath | |
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}") | |
if len(text) <= 0 and image is None: | |
state.skip_next = True | |
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5 | |
if args.moderate: | |
flagged = violates_moderation(text) | |
if flagged: | |
state.skip_next = True | |
return (state, state.to_gradio_chatbot(), moderation_msg, None) + ( | |
no_change_btn,) * 5 | |
assert image is None or video is None, "Please don't feed image and video inputs at the same time!!!" | |
text = text[:1536] # Hard cut-off | |
if image is not None: | |
# here image is the PIL object itself | |
text = text[:1200] # Hard cut-off for images | |
if '<image>' not in text: | |
# text = '<Image><image></Image>' + text | |
text = text + '\n<image>' | |
text = (text, image, image_process_mode) | |
if len(state.get_images(return_pil=True)) > 0: | |
state = default_conversation.copy() | |
state.modality = "image" | |
if video is not None: | |
print("Video box:", video) | |
# here video is the file path of video | |
text = text[:1200] # Hard cut-off for images | |
if '<video>' not in text: | |
# text = '<Image><image></Image>' + text | |
text = text + '\n<video>' | |
text = (text, video, image_process_mode) | |
if len(state.get_videos(return_pil=True)) > 0: | |
state = default_conversation.copy() | |
state.modality = "video" | |
print("Set modality as video...") | |
state.append_message(state.roles[0], text) | |
state.append_message(state.roles[1], None) | |
state.skip_next = False | |
# (state, chatbot, textbox, imagebox, videobox, upvote, downvote, flag, generate, clear) | |
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5 | |
def add_text(state, text, image, video, image_process_mode, request: gr.Request): | |
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}") | |
# if input is new video or image ,reset the state | |
if image is not None or video is not None: | |
state = default_conversation.copy() | |
if len(text) <= 0 and image is None and video is None: | |
state.skip_next = True | |
return (state, state.to_gradio_chatbot(), "", None, None) + (no_change_btn,) * 5 | |
if args.moderate: | |
flagged = violates_moderation(text) | |
if flagged: | |
state.skip_next = True | |
return (state, state.to_gradio_chatbot(), moderation_msg, None) + (no_change_btn,) * 5 | |
# process the input video | |
if video is not None: | |
text = text[:1200] # | |
if '<video>' not in text: | |
text = text + '\n<video>' | |
text = (text, video, image_process_mode) | |
state.modality = "video" | |
# process the input image | |
elif image is not None: | |
text = text[:1200] # | |
if '<image>' not in text: | |
text = text + '\n<image>' | |
text = (text, image, image_process_mode) | |
state.modality = "image" | |
elif state.modality == "image" and len(text)>0: | |
state.modality = "image_text" | |
text = text[:1536] # Hard cut-off | |
elif state.modality == "video" and len(text)>0: | |
state.modality = "video_text" | |
text = text[:1536] # Hard cut-off | |
state.append_message(state.roles[0], text) | |
state.append_message(state.roles[1], None) | |
state.skip_next = False | |
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5 | |
def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request): | |
logger.info(f"http_bot. ip: {request.client.host}") | |
start_tstamp = time.time() | |
model_name = model_selector | |
if state.skip_next: | |
# This generate call is skipped due to invalid inputs | |
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5 | |
return | |
if len(state.messages) == state.offset + 2: | |
# First round of conversation | |
if "llava" in model_name.lower(): | |
if 'llama-2' in model_name.lower(): | |
template_name = "llava_llama2" | |
elif "v1" in model_name.lower(): | |
if 'mmtag' in model_name.lower(): | |
template_name = "v1_mmtag" | |
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): | |
template_name = "v1_mmtag" | |
else: | |
template_name = "llava_v1" | |
else: | |
if 'mmtag' in model_name.lower(): | |
template_name = "v0_mmtag" | |
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): | |
template_name = "v0_mmtag" | |
else: | |
template_name = "llava_v0" | |
elif "llama-2" in model_name: | |
template_name = "llama2" | |
else: | |
template_name = "vicuna_v1" | |
template_name = "llava_v1" | |
new_state = conv_templates[template_name].copy() | |
new_state.append_message(new_state.roles[0], state.messages[-2][1]) | |
new_state.append_message(new_state.roles[1], None) | |
new_state.modality = state.modality | |
state = new_state | |
# Query worker address | |
controller_url = args.controller_url | |
ret = requests.post(controller_url + "/get_worker_address", | |
json={"model": model_name}) | |
worker_addr = ret.json()["address"] | |
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}") | |
# No available worker | |
if worker_addr == "": | |
state.messages[-1][-1] = server_error_msg | |
yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) | |
return | |
# Construct prompt | |
prompt = state.get_prompt() | |
if state.modality == "image" or state.modality == "image_text": | |
all_images = state.get_images(return_pil=True) # return PIL.Image object | |
elif state.modality == "video" or state.modality == "video_text": | |
all_images = state.get_videos(return_pil=True) # return video frames where each frame is a PIL.Image object | |
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images] | |
for idx, (image, hash) in enumerate(zip(all_images, all_image_hash)): | |
t = datetime.datetime.now() | |
if state.modality == "image" or state.modality == "image_text": | |
filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg") | |
elif state.modality == "video" or state.modality == "video_text": | |
filename = os.path.join(LOGDIR, "serve_videos", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}_{idx}.jpg") | |
if not os.path.isfile(filename): | |
os.makedirs(os.path.dirname(filename), exist_ok=True) | |
image.save(filename) | |
# Make requests | |
pload = { | |
"model": model_name, | |
"prompt": prompt, | |
"temperature": float(temperature), | |
"top_p": float(top_p), | |
"max_new_tokens": min(int(max_new_tokens), 1536), | |
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE] else state.sep2, | |
#"images": f'List of {len(state.get_images())} images: {all_image_hash}', | |
"images": f'List of {len(all_image_hash)} images: {all_image_hash}', | |
} | |
logger.info(f"==== request ====\n{pload}") | |
if state.modality == "image" or state.modality == "image_text": | |
pload['images'] = state.get_images() | |
elif state.modality == "video" or state.modality == "video_text": | |
pload['images'] = state.get_videos() | |
state.messages[-1][-1] = "▌" | |
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 | |
try: | |
# Stream output | |
response = requests.post(worker_addr + "/worker_generate_stream", | |
headers=headers, json=pload, stream=True, timeout=10) | |
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"): | |
if chunk: | |
data = json.loads(chunk.decode()) | |
if data["error_code"] == 0: | |
output = data["text"][len(prompt):].strip() | |
state.messages[-1][-1] = output + "▌" | |
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 | |
else: | |
output = data["text"] + f" (error_code: {data['error_code']})" | |
state.messages[-1][-1] = output | |
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) | |
return | |
time.sleep(0.03) | |
except requests.exceptions.RequestException as e: | |
state.messages[-1][-1] = server_error_msg | |
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) | |
return | |
state.messages[-1][-1] = state.messages[-1][-1][:-1] | |
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5 | |
finish_tstamp = time.time() | |
logger.info(f"{output}") | |
with open(get_conv_log_filename(), "a") as fout: | |
data = { | |
"tstamp": round(finish_tstamp, 4), | |
"type": "chat", | |
"model": model_name, | |
"start": round(start_tstamp, 4), | |
"finish": round(start_tstamp, 4), | |
#"state": state.dict(), | |
"images": all_image_hash, | |
"ip": request.client.host, | |
} | |
fout.write(json.dumps(data) + "\n") | |
title_markdown = (""" | |
# The publicl release of VideoLLaMA2 | |
""") | |
tos_markdown = (""" | |
### Terms of use | |
By using this service, users are required to agree to the following terms: | |
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. | |
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator. | |
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. | |
""") | |
learn_more_markdown = (""" | |
### License | |
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. | |
""") | |
block_css = """ | |
#buttons button { | |
min-width: min(120px,100%); | |
} | |
""" | |
def build_demo(embed_mode): | |
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False) | |
with gr.Blocks(title="Video-Llama", theme=gr.themes.Default(), css=block_css) as demo: | |
state = gr.State() | |
if not embed_mode: | |
gr.Markdown(title_markdown) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
with gr.Row(elem_id="model_selector_row"): | |
model_selector = gr.Dropdown( | |
choices=models, | |
value=models[0] if len(models) > 0 else "", | |
interactive=True, | |
show_label=False, | |
container=False) | |
imagebox = gr.Image(type="pil") | |
videobox = gr.Video() | |
image_process_mode = gr.Radio( | |
["Crop", "Resize", "Pad", "Default"], | |
value="Default", | |
label="Preprocess for non-square image", visible=False) | |
cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
gr.Examples(examples=[ | |
[f"{cur_dir}/examples/extreme_ironing.jpg", "What is unusual about this image?"], | |
[f"{cur_dir}/examples/waterview.jpg", "What are the things I should be cautious about when I visit here?"], | |
[f"{cur_dir}/examples/desert.jpg", "If there are factual errors in the questions, point it out; if not, proceed answering the question. What’s happening in the desert?"], | |
], inputs=[imagebox, textbox], label="Image examples") | |
# video example inputs | |
gr.Examples(examples=[ | |
[f"{cur_dir}/examples/sample_demo_1.mp4", "Why is this video funny?"], | |
[f"{cur_dir}/examples/sample_demo_3.mp4", "Can you identify any safety hazards in this video?"], | |
[f"{cur_dir}/examples/1034346401.mp4", "What is this young woman doing?"] | |
], inputs=[videobox, textbox], label="Video examples") | |
#[f"{cur_dir}/examples/sample_demo_9.mp4", "Describe the video in detail and please do not generate repetitive content."] | |
with gr.Accordion("Parameters", open=False) as parameter_row: | |
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",) | |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",) | |
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",) | |
with gr.Column(scale=8): | |
chatbot = gr.Chatbot(elem_id="chatbot", label="Videollama2 Chatbot", height=550) | |
with gr.Row(): | |
with gr.Column(scale=8): | |
textbox.render() | |
with gr.Column(scale=1, min_width=50): | |
submit_btn = gr.Button(value="Send", variant="primary") | |
with gr.Row(elem_id="buttons") as button_row: | |
upvote_btn = gr.Button(value="👍 Upvote", interactive=False) | |
downvote_btn = gr.Button(value="👎 Downvote", interactive=False) | |
flag_btn = gr.Button(value="⚠️ Flag", interactive=False) | |
#stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False) | |
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) | |
clear_btn = gr.Button(value="🗑️ Clear", interactive=False) | |
if not embed_mode: | |
gr.Markdown(tos_markdown) | |
gr.Markdown(learn_more_markdown) | |
url_params = gr.JSON(visible=False) | |
# Register listeners | |
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] | |
upvote_btn.click(upvote_last_response, | |
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn]) | |
downvote_btn.click(downvote_last_response, | |
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn]) | |
flag_btn.click(flag_last_response, | |
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn]) | |
regenerate_btn.click(regenerate, [state, image_process_mode], | |
[state, chatbot, textbox, imagebox, videobox] + btn_list).then( | |
http_bot, [state, model_selector, temperature, top_p, max_output_tokens], | |
[state, chatbot] + btn_list) | |
clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox, videobox] + btn_list) | |
textbox.submit(add_text, [state, textbox, imagebox, videobox, image_process_mode], [state, chatbot, textbox, imagebox, videobox] + btn_list | |
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens], | |
[state, chatbot] + btn_list) | |
submit_btn.click(add_text, [state, textbox, imagebox, videobox, image_process_mode], [state, chatbot, textbox, imagebox, videobox] + btn_list | |
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens], | |
[state, chatbot] + btn_list) | |
if args.model_list_mode == "once": | |
demo.load(load_demo, [url_params], [state, model_selector], | |
_js=get_window_url_params) | |
elif args.model_list_mode == "reload": | |
demo.load(load_demo_refresh_model_list, None, [state, model_selector]) | |
else: | |
raise ValueError(f"Unknown model list mode: {args.model_list_mode}") | |
return demo | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--host", type=str, default="0.0.0.0") | |
parser.add_argument("--port", type=int) | |
parser.add_argument("--controller-url", type=str, default="http://localhost:21001") | |
parser.add_argument("--concurrency-count", type=int, default=10) | |
parser.add_argument("--model-list-mode", type=str, default="once", | |
choices=["once", "reload"]) | |
parser.add_argument("--share", action="store_true") | |
parser.add_argument("--moderate", action="store_true") | |
parser.add_argument("--embed", action="store_true") | |
args = parser.parse_args() | |
logger.info(f"args: {args}") | |
models = get_model_list() | |
logger.info(args) | |
demo = build_demo(args.embed) | |
demo.queue( | |
concurrency_count=args.concurrency_count, | |
api_open=False | |
).launch( | |
server_name=args.host, | |
server_port=args.port, | |
share=args.share | |
) | |