omowe.ai / app.py
paulokewunmi's picture
Add paraphrase feature
31dada8
raw
history blame
14.3 kB
import gradio as gr
from src.document_utils import (
summarize,
question_answer,
generate_questions,
load_history,
load_science,
paraphrase
)
from src.wiki_search import cross_lingual_document_search, translate_text
from src.theme import CustomTheme
max_search_results = 3
def reset_chatbot():
return gr.update(value="")
def get_user_input(input_question, history):
return "", history + [[input_question, None]]
def study_doc_qa_bot(input_document, history):
bot_message = question_answer(input_document, history)
history[-1][1] = bot_message
return history
custom_theme = CustomTheme()
with gr.Blocks(theme=custom_theme) as demo:
gr.HTML(
"""<html><center><img src='file/logo/omowe_logo.png', alt='omowe.ai logo', width=820, height=312 /></center><br></html>"""
)
qa_bot_state = gr.State(value=[])
with gr.Tabs():
with gr.TabItem("Document Search"):
gr.HTML(
"""<p style="text-align:center;font-size:24px;"><b>Search across a library of study materials in your own native language or even a mix of languages.</p>"""
)
gr.HTML(
"""<p style="text-align:center; font-style:italic; font-size:16px;">Get started with a pre-indexed set of study materials spaning various subjects (History, Literature, Philosophy, Government etc) in 4 different languages.</p>"""
)
with gr.Row():
text_match = gr.CheckboxGroup(
["Full Text Search"], label="find exact text in documents", visible=False
)
with gr.Row():
lang_choices = gr.CheckboxGroup(
[
"English",
"Yoruba",
"Igbo",
"Hausa",
],
label="Filter results based on language",
value = "Yoruba"
)
with gr.Row():
with gr.Column():
user_query = gr.Text(
label="Enter query here",
placeholder="Search through study materials (e.g The Nigerian Civil War)",
)
num_search_results = gr.Slider(
1,
max_search_results,
visible=False,
value=max_search_results,
step=1,
interactive=True,
label="How many search results to show:",
)
with gr.Row():
with gr.Column():
query_match_out_1 = gr.Textbox(
label= f"Search Result 1"
)
with gr.Column():
with gr.Accordion("Click to View Translation/Source", open=False):
translate_btn_1 = gr.Button(
label="Translate Text",
value="Translate Text",
variant="primary",
)
translate_res_1 = gr.Textbox(
label=f"Translation in English",
)
source_res_1 = gr.Textbox(
label=f"Source Url",
)
with gr.Row():
with gr.Column():
query_match_out_2 = gr.Textbox(label=f"Search Result 2")
with gr.Column():
with gr.Accordion("Click to View Translation/Source", open=False):
translate_btn_2 = gr.Button(
label="Translate Text",
value="Translate Text",
variant="primary",
)
translate_res_2 = gr.Textbox(
label=f"Translation in English",
)
source_res_2 = gr.Textbox(
label=f"Source Url"
)
with gr.Row():
with gr.Column():
query_match_out_3 = gr.Textbox(label=f"Search Result 3")
with gr.Column():
with gr.Accordion("Click to View Translation/Source", open=False):
translate_btn_3 = gr.Button(
label="Translate Text",
value="Translate Text",
variant="primary",
)
translate_res_3= gr.Textbox(
label=f"Translation in English",
)
source_res_3 = gr.Textbox(
label=f"Source Url"
)
with gr.TabItem("Q&A"):
gr.HTML(
"""<p style="text-align:center; font-size:16px;"><b>Looking to breeze through your study materials effortlessly? Simply upload your documents and fire away any questions you have!</p>"""
)
with gr.Row():
with gr.Accordion("Click to use preloaded examples", open=False):
example_2 = gr.Button(
"Load History of Nigeria", variant="primary"
)
example_1 = gr.Button(
"Load Science of Photosynthesis", variant="primary"
)
with gr.Row():
with gr.Column():
input_document = gr.Text(label="Copy your document here", lines=2)
input_document_pdf = gr.inputs.File(label="Uplaod file")
with gr.Column():
chatbot = gr.Chatbot(label="Chat History")
input_question = gr.Text(
label="Ask a question",
placeholder="Type a question here and hit enter.",
)
clear = gr.Button("Clear", variant="primary")
with gr.TabItem("Summarize"):
gr.HTML(
"""<p style="text-align:center; font-size:24px;"><b> Get the most out of your study materials!</p>"""
)
gr.HTML(
"""<p style="text-align:center; font-size:16px;"><b>You can easily upload your documents and generate quick summaries and practice questions in a flash.</p>"""
)
with gr.Row():
with gr.Accordion("Click to use preloaded examples", open=False):
example_4 = gr.Button(
"Load History of Nigeria", variant="primary"
)
example_3 = gr.Button(
"Load Science of Photosynthesis", variant="primary"
)
with gr.Row():
with gr.Column():
summary_input = gr.Text(label="Document", lines=5)
with gr.Column():
summary_output = gr.Text(label="Generated Summary", lines=5)
invisible_comp = gr.Text(label="Dummy Component", visible=False)
with gr.Row():
with gr.Column():
with gr.Accordion("Summary Settings", open=False):
summary_length = gr.Radio(
["short", "medium", "long"],
label="Summary Length",
value="long",
)
summary_format = gr.Radio(
["paragraph", "bullets"],
label="Summary Format",
value="bullets",
)
extractiveness = gr.Radio(
["low", "medium", "high"],
label="Extractiveness",
info="Controls how close to the original text the summary is.",
visible=False,
value="high",
)
temperature = gr.Slider(
minimum=0,
maximum=5.0,
value=0.64,
step=0.1,
interactive=True,
visible=False,
label="Temperature",
info="Controls the randomness of the output. Lower values tend to generate more “predictable” output, while higher values tend to generate more “creative” output.",
)
with gr.Row():
generate_summary = gr.Button("Generate Summary", variant="primary")
with gr.Row():
generate_questions_btn = gr.Button("Generate practice questions", variant="primary")
with gr.Row():
generate_output = gr.Text(label="Generated questions", lines=5)
with gr.TabItem("Paraphrase"):
gr.HTML(
"""<p style="text-align:center;"><b>Paraphraser. Add your document below and generate a rephrase for it.</p>"""
)
with gr.Row():
with gr.Column():
paraphrase_input = gr.Text(label="Document", lines=10)
generate_paraphrase = gr.Button("Paraphrase", variant="primary")
with gr.Column():
paraphrase_output = gr.HTML(label="Paraphrase", lines=10)
invisible_comp = gr.Text(label="Dummy Component", visible=False)
with gr.Row():
with gr.Accordion("Advanced Settings:", open=False):
paraphrase_length = gr.Radio(
["short", "medium", "long"],
label="Paraphrase Length",
value="long",
)
paraphrase_format = gr.Radio(
["paragraph", "bullets"],
label="Paraphrase Format",
value="bullets",
)
extractiveness = gr.Radio(
["low", "medium", "high"],
label="Extractiveness",
info="Controls how close to the original text the paraphrase is.",
visible=False,
value="high",
)
temperature = gr.Slider(
minimum=0,
maximum=5.0,
value=0.64,
step=0.1,
interactive=True,
visible=False,
label="Temperature",
info="Controls the randomness of the output. Lower values tend to generate more “predictable” output, while higher values tend to generate more “creative” output.",
)
# fetch answer for submitted question corresponding to input document
input_question.submit(
get_user_input,
[input_question, chatbot],
[input_question, chatbot],
queue=False,
).then(study_doc_qa_bot, [input_document, chatbot], chatbot)
# reset the chatbot Q&A history when input document changes
input_document.change(fn=reset_chatbot, inputs=[], outputs=chatbot)
# Loading examples on click for Q&A module
example_1.click(
load_history,
[],
[input_document, input_question],
queue=False,
)
example_2.click(
load_science,
[],
[input_document, input_question],
queue=False,
)
# Loading examples on click for Q&A module
example_3.click(
load_history,
[],
[summary_input, invisible_comp],
queue=False,
)
example_4.click(
load_science,
[],
[summary_input, invisible_comp],
queue=False,
)
# generate summary corresponding to document submitted by the user.
generate_summary.click(
summarize,
[summary_input, summary_length, summary_format, extractiveness, temperature],
[summary_output],
queue=False,
)
generate_questions_btn.click(
generate_questions,
[summary_input],
[generate_output],
queue=False,
)
generate_paraphrase.click(
paraphrase,
[paraphrase_input],
[paraphrase_output],
queue=False,
)
# clear the chatbot Q&A history when this button is clicked by the user
clear.click(lambda: None, None, chatbot, queue=False)
# run search if user submits query
user_query.submit(
cross_lingual_document_search,
[user_query, num_search_results, lang_choices, text_match],
[query_match_out_1, query_match_out_2, query_match_out_3, \
source_res_1,source_res_2,source_res_3],
queue=False,
)
# translate results corresponding to 1st search result obtained if user clicks 'Translate'
translate_btn_1.click(
translate_text,
[query_match_out_1],
[translate_res_1],
queue=False,
)
translate_btn_2.click(
translate_text,
[query_match_out_2],
[translate_res_2],
queue=False,
)
translate_btn_3.click(
translate_text,
[query_match_out_3],
[translate_res_3],
queue=False,
)
if __name__ == "__main__":
demo.launch(debug=True)