Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from rdkit import Chem | |
from rdkit.Chem import AllChem | |
import pickle | |
# Load cell lines data and top genes | |
cell_lines = pd.read_csv('gene_expression.csv', index_col=0) | |
with open('2128_genes.pkl', 'rb') as f: | |
top_genes = pickle.load(f) | |
# Load model | |
with open('xgboost.pkl', 'rb') as f: | |
model = pickle.load(f) | |
filtered_cell_lines = cell_lines[cell_lines.columns.intersection(top_genes)] | |
# Define the smiles_to_fingerprint function | |
def smiles_to_fingerprint(smiles): | |
mol = Chem.MolFromSmiles(smiles) | |
fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=1024) | |
return fp | |
# Define a function that will be called when the user makes a prediction | |
def predict(smiles_notation): | |
# Transform SMILES to fingerprint | |
fingerprint = smiles_to_fingerprint(smiles_notation) | |
# Convert the fingerprint to a DataFrame with one row and columns representing bits | |
fingerprint_df = pd.DataFrame([list(fingerprint)], columns=range(1024)).apply(lambda x: pd.Series({f'fp{str(i)}': val for i, val in enumerate(x)}), axis=1) | |
# Merge the fingerprint with each row of filtered_cell_lines | |
fingerprint_df['common_key'] = 1 | |
filtered_cell_lines['common_key'] = 1 | |
merged_data = pd.merge(filtered_cell_lines, fingerprint_df, on='common_key').drop('common_key', axis=1) | |
# Perform any additional processing or prediction based on the merged_data | |
predicts = model.predict(merged_data) | |
#merge predicts with cell lines | |
predicts = pd.DataFrame({'IC50': predicts, | |
'Cell_line': filtered_cell_lines.index}) | |
#sort by IC50 (only lowest 20) | |
predicts = predicts.sort_values(by='IC50').head(10) | |
return predicts | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Textbox(value="COc1cc(O)c2c(c1)C=CCC(O)C(O)C(=O)C=CCC(C)OC2=O", lines=1, label="Enter drug in SMILES notation"), | |
outputs=gr.Dataframe(headers=['IC50', 'Cell_line'], type="numpy",label = 'Top 10 Cell Lines with lowest IC50 (GDSC2 dataset)' , datatype="number", row_count=10, col_count=2), | |
title="Drug Response Prediction", | |
) | |
# Launch the Gradio interface | |
iface.launch(share=True) |