MedSearchPro / utils /cache_manager.py
paulhemb's picture
Initial Backend Deployment
1367957
# utils/cache_manager.py
"""
Intelligent response caching system with semantic similarity detection
Reduces LLM costs and improves response times
"""
import json
import hashlib
import pickle
import time
from typing import Any, Dict, Optional
from datetime import datetime, timedelta
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
class ResponseCache:
"""
Advanced caching system with semantic similarity matching
Caches LLM responses and similar queries to avoid redundant API calls
"""
def __init__(self, cache_file: str = "./data/cache/response_cache.db", similarity_threshold: float = 0.85):
self.cache_file = cache_file
self.similarity_threshold = similarity_threshold
self.cache_data = {}
self.embedding_model = None
self._load_cache()
self._initialize_embedding_model()
def _initialize_embedding_model(self):
"""Initialize embedding model for semantic similarity"""
try:
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
print("✅ Semantic cache embedding model loaded")
except Exception as e:
print(f"⚠️ Could not load embedding model: {e}. Using exact match caching.")
self.embedding_model = None
def _load_cache(self):
"""Load cache from disk"""
try:
with open(self.cache_file, 'rb') as f:
self.cache_data = pickle.load(f)
print(f"✅ Cache loaded with {len(self.cache_data)} entries")
except (FileNotFoundError, EOFError):
self.cache_data = {}
print("🆕 Starting with empty cache")
def _save_cache(self):
"""Save cache to disk"""
try:
import os
os.makedirs(os.path.dirname(self.cache_file), exist_ok=True)
with open(self.cache_file, 'wb') as f:
pickle.dump(self.cache_data, f)
except Exception as e:
print(f"❌ Could not save cache: {e}")
def _generate_cache_key(self, prompt: str, provider: str, temperature: float) -> str:
"""Generate deterministic cache key"""
content = f"{prompt}_{provider}_{temperature}"
return hashlib.md5(content.encode()).hexdigest()
def _get_semantic_embedding(self, text: str) -> np.ndarray:
"""Get semantic embedding for text"""
if self.embedding_model is None:
return None
return self.embedding_model.encode([text])[0]
def _find_similar_cached_response(self, prompt: str, provider: str, temperature: float) -> Optional[Dict]:
"""Find semantically similar cached responses"""
if self.embedding_model is None or not self.cache_data:
return None
prompt_embedding = self._get_semantic_embedding(prompt)
if prompt_embedding is None:
return None
best_match = None
best_similarity = 0
for cache_key, cache_entry in self.cache_data.items():
if cache_entry['provider'] != provider:
continue
# Check if cached embedding exists
if 'embedding' not in cache_entry:
# Generate embedding for existing cache entries
cache_entry['embedding'] = self._get_semantic_embedding(cache_entry['prompt'])
if cache_entry['embedding'] is None:
continue
# Calculate similarity
similarity = cosine_similarity(
[prompt_embedding],
[cache_entry['embedding']]
)[0][0]
if similarity > best_similarity and similarity >= self.similarity_threshold:
best_similarity = similarity
best_match = cache_entry
if best_match:
print(f"🎯 Semantic cache hit: similarity {best_similarity:.3f}")
return best_match
return None
def get(self, prompt: str, provider: str, temperature: float = 0.1) -> Optional[str]:
"""
Get cached response for prompt
Returns None if no cache hit
"""
# First try exact match
cache_key = self._generate_cache_key(prompt, provider, temperature)
if cache_key in self.cache_data:
entry = self.cache_data[cache_key]
# Check if cache is still valid (24 hour TTL)
if datetime.now() - entry['timestamp'] < timedelta(hours=24):
print(f"✅ Exact cache hit for {provider}")
return entry['response']
else:
# Remove expired entry
del self.cache_data[cache_key]
# Try semantic similarity match
similar_entry = self._find_similar_cached_response(prompt, provider, temperature)
if similar_entry:
if datetime.now() - similar_entry['timestamp'] < timedelta(hours=24):
return similar_entry['response']
return None
def set(self, prompt: str, response: str, provider: str, temperature: float = 0.1):
"""Cache a response"""
cache_key = self._generate_cache_key(prompt, provider, temperature)
cache_entry = {
'prompt': prompt,
'response': response,
'provider': provider,
'temperature': temperature,
'timestamp': datetime.now(),
'embedding': self._get_semantic_embedding(prompt)
}
self.cache_data[cache_key] = cache_entry
# Limit cache size (keep most recent 1000 entries)
if len(self.cache_data) > 1000:
# Remove oldest entries
sorted_entries = sorted(self.cache_data.items(),
key=lambda x: x[1]['timestamp'])
for key, _ in sorted_entries[:-1000]:
del self.cache_data[key]
self._save_cache()
print(f"💾 Cached response from {provider}")
def get_stats(self) -> Dict[str, Any]:
"""Get cache statistics"""
total_entries = len(self.cache_data)
if total_entries == 0:
return {"total_entries": 0}
now = datetime.now()
recent_entries = sum(1 for entry in self.cache_data.values()
if now - entry['timestamp'] < timedelta(hours=1))
providers = {}
for entry in self.cache_data.values():
provider = entry['provider']
providers[provider] = providers.get(provider, 0) + 1
return {
"total_entries": total_entries,
"recent_entries_1h": recent_entries,
"providers_distribution": providers,
"cache_file": self.cache_file,
"semantic_caching": self.embedding_model is not None
}
def clear_expired(self, max_age_hours: int = 24):
"""Clear expired cache entries"""
now = datetime.now()
expired_keys = [
key for key, entry in self.cache_data.items()
if now - entry['timestamp'] > timedelta(hours=max_age_hours)
]
for key in expired_keys:
del self.cache_data[key]
self._save_cache()
print(f"🧹 Cleared {len(expired_keys)} expired cache entries")
# Cached LLM Provider Wrapper
class CachedLLMProvider:
"""Wrapper that adds caching to any LLM provider"""
def __init__(self, llm_provider, cache_manager: ResponseCache):
self.llm_provider = llm_provider
self.cache_manager = cache_manager
def generate(self, prompt: str, system_message: str = None, **kwargs) -> str:
"""Generate with caching"""
full_prompt = prompt
if system_message:
full_prompt = f"{system_message}\n\n{prompt}"
provider_name = self.llm_provider.get_provider_name()
temperature = kwargs.get('temperature', 0.1)
# Try cache first
cached_response = self.cache_manager.get(full_prompt, provider_name, temperature)
if cached_response:
return cached_response
# Generate fresh response
response = self.llm_provider.generate(prompt, system_message, **kwargs)
# Cache the response
self.cache_manager.set(full_prompt, response, provider_name, temperature)
return response
def get_provider_name(self) -> str:
return f"Cached-{self.llm_provider.get_provider_name()}"
# Quick test
def test_cache_system():
"""Test the caching system"""
print("🧪 Testing Cache System")
print("=" * 50)
cache = ResponseCache("./data/test_cache.db")
# Test cache operations
test_prompt = "Explain machine learning in simple terms."
test_response = "Machine learning is a subset of AI that enables computers to learn from data."
cache.set(test_prompt, test_response, "test-provider", 0.1)
# Test retrieval
retrieved = cache.get(test_prompt, "test-provider", 0.1)
print(f"✅ Cache test: {retrieved == test_response}")
# Test stats
stats = cache.get_stats()
print(f"📊 Cache stats: {stats}")
if __name__ == "__main__":
test_cache_system()