|
""" |
|
This MobileNetV2 implementation is modified from the following repository: |
|
https://github.com/tonylins/pytorch-mobilenet-v2 |
|
""" |
|
|
|
import os |
|
import sys |
|
import torch |
|
import torch.nn as nn |
|
import math |
|
try: |
|
from lib.nn import SynchronizedBatchNorm2d |
|
except ImportError: |
|
from torch.nn import BatchNorm2d as SynchronizedBatchNorm2d |
|
|
|
try: |
|
from urllib import urlretrieve |
|
except ImportError: |
|
from urllib.request import urlretrieve |
|
|
|
|
|
__all__ = ['mobilenetv2'] |
|
|
|
|
|
model_urls = { |
|
'mobilenetv2': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/mobilenet_v2.pth.tar', |
|
} |
|
|
|
|
|
def conv_bn(inp, oup, stride): |
|
return nn.Sequential( |
|
nn.Conv2d(inp, oup, 3, stride, 1, bias=False), |
|
SynchronizedBatchNorm2d(oup), |
|
nn.ReLU6(inplace=True) |
|
) |
|
|
|
|
|
def conv_1x1_bn(inp, oup): |
|
return nn.Sequential( |
|
nn.Conv2d(inp, oup, 1, 1, 0, bias=False), |
|
SynchronizedBatchNorm2d(oup), |
|
nn.ReLU6(inplace=True) |
|
) |
|
|
|
|
|
class InvertedResidual(nn.Module): |
|
def __init__(self, inp, oup, stride, expand_ratio): |
|
super(InvertedResidual, self).__init__() |
|
self.stride = stride |
|
assert stride in [1, 2] |
|
|
|
hidden_dim = round(inp * expand_ratio) |
|
self.use_res_connect = self.stride == 1 and inp == oup |
|
|
|
if expand_ratio == 1: |
|
self.conv = nn.Sequential( |
|
|
|
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), |
|
SynchronizedBatchNorm2d(hidden_dim), |
|
nn.ReLU6(inplace=True), |
|
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), |
|
SynchronizedBatchNorm2d(oup), |
|
) |
|
else: |
|
self.conv = nn.Sequential( |
|
|
|
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), |
|
SynchronizedBatchNorm2d(hidden_dim), |
|
nn.ReLU6(inplace=True), |
|
|
|
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), |
|
SynchronizedBatchNorm2d(hidden_dim), |
|
nn.ReLU6(inplace=True), |
|
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), |
|
SynchronizedBatchNorm2d(oup), |
|
) |
|
|
|
def forward(self, x): |
|
if self.use_res_connect: |
|
return x + self.conv(x) |
|
else: |
|
return self.conv(x) |
|
|
|
|
|
class MobileNetV2(nn.Module): |
|
def __init__(self, n_class=1000, input_size=224, width_mult=1.): |
|
super(MobileNetV2, self).__init__() |
|
block = InvertedResidual |
|
input_channel = 32 |
|
last_channel = 1280 |
|
interverted_residual_setting = [ |
|
|
|
[1, 16, 1, 1], |
|
[6, 24, 2, 2], |
|
[6, 32, 3, 2], |
|
[6, 64, 4, 2], |
|
[6, 96, 3, 1], |
|
[6, 160, 3, 2], |
|
[6, 320, 1, 1], |
|
] |
|
|
|
|
|
assert input_size % 32 == 0 |
|
input_channel = int(input_channel * width_mult) |
|
self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel |
|
self.features = [conv_bn(3, input_channel, 2)] |
|
|
|
for t, c, n, s in interverted_residual_setting: |
|
output_channel = int(c * width_mult) |
|
for i in range(n): |
|
if i == 0: |
|
self.features.append(block(input_channel, output_channel, s, expand_ratio=t)) |
|
else: |
|
self.features.append(block(input_channel, output_channel, 1, expand_ratio=t)) |
|
input_channel = output_channel |
|
|
|
self.features.append(conv_1x1_bn(input_channel, self.last_channel)) |
|
|
|
self.features = nn.Sequential(*self.features) |
|
|
|
|
|
self.classifier = nn.Sequential( |
|
nn.Dropout(0.2), |
|
nn.Linear(self.last_channel, n_class), |
|
) |
|
|
|
self._initialize_weights() |
|
|
|
def forward(self, x): |
|
x = self.features(x) |
|
x = x.mean(3).mean(2) |
|
x = self.classifier(x) |
|
return x |
|
|
|
def _initialize_weights(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, math.sqrt(2. / n)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
elif isinstance(m, SynchronizedBatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.Linear): |
|
n = m.weight.size(1) |
|
m.weight.data.normal_(0, 0.01) |
|
m.bias.data.zero_() |
|
|
|
|
|
def mobilenetv2(pretrained=False, **kwargs): |
|
"""Constructs a MobileNet_V2 model. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
""" |
|
model = MobileNetV2(n_class=1000, **kwargs) |
|
if pretrained: |
|
model.load_state_dict(load_url(model_urls['mobilenetv2']), strict=False) |
|
return model |
|
|
|
|
|
def load_url(url, model_dir='./pretrained', map_location=None): |
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir) |
|
filename = url.split('/')[-1] |
|
cached_file = os.path.join(model_dir, filename) |
|
if not os.path.exists(cached_file): |
|
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file)) |
|
urlretrieve(url, cached_file) |
|
return torch.load(cached_file, map_location=map_location) |
|
|
|
|