Paul Engstler
Initial commit
92f0e98
raw
history blame
7.94 kB
'''
Customized version of pytorch resnet, alexnets.
'''
import numpy, torch, math, os
from torch import nn
from collections import OrderedDict
from torchvision.models import resnet
from torchvision.models.alexnet import model_urls as alexnet_model_urls
class CustomResNet(nn.Module):
'''
Customizable ResNet, compatible with pytorch's resnet, but:
* The top-level sequence of modules can be modified to add
or remove or alter layers.
* Extra outputs can be produced, to allow backprop and access
to internal features.
* Pooling is replaced by resizable GlobalAveragePooling so that
any size can be input (e.g., any multiple of 32 pixels).
* halfsize=True halves striding on the first pooling to
set the default size to 112x112 instead of 224x224.
'''
def __init__(self, size=None, block=None, layers=None, num_classes=1000,
extra_output=None, modify_sequence=None, halfsize=False):
standard_sizes = {
18: (resnet.BasicBlock, [2, 2, 2, 2]),
34: (resnet.BasicBlock, [3, 4, 6, 3]),
50: (resnet.Bottleneck, [3, 4, 6, 3]),
101: (resnet.Bottleneck, [3, 4, 23, 3]),
152: (resnet.Bottleneck, [3, 8, 36, 3])
}
assert (size in standard_sizes) == (block is None) == (layers is None)
if size in standard_sizes:
block, layers = standard_sizes[size]
if modify_sequence is None:
modify_sequence = lambda x: x
self.inplanes = 64
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer # for recent resnet
self.dilation = 1
self.groups = 1
self.base_width = 64
sequence = modify_sequence([
('conv1', nn.Conv2d(3, 64, kernel_size=7, stride=2,
padding=3, bias=False)),
('bn1', norm_layer(64)),
('relu', nn.ReLU(inplace=True)),
('maxpool', nn.MaxPool2d(3, stride=1 if halfsize else 2,
padding=1)),
('layer1', self._make_layer(block, 64, layers[0])),
('layer2', self._make_layer(block, 128, layers[1], stride=2)),
('layer3', self._make_layer(block, 256, layers[2], stride=2)),
('layer4', self._make_layer(block, 512, layers[3], stride=2)),
('avgpool', GlobalAveragePool2d()),
('fc', nn.Linear(512 * block.expansion, num_classes))
])
super(CustomResNet, self).__init__()
for name, layer in sequence:
setattr(self, name, layer)
self.extra_output = extra_output
def _make_layer(self, block, channels, depth, stride=1):
return resnet.ResNet._make_layer(self, block, channels, depth, stride)
def forward(self, x):
extra = []
for name, module in self._modules.items():
x = module(x)
if self.extra_output and name in self.extra_output:
extra.append(x)
if self.extra_output:
return (x,) + tuple(extra)
return x
class CustomAlexNet(nn.Module):
'''
Customizable AlexNet, compatible with pytorch's alexnet, but:
* The top-level sequence of modules can be modified to add
or remove or alter layers.
* Extra outputs can be produced, to allow backprop and access
to internal features.
* halfsize=True halves striding on the first convolution to
allow 119x119 images to be processed rather than 227x227 only.
'''
def __init__(self, channels=None, num_classes=1000,
extra_output=None, modify_sequence=None, halfsize=False):
if channels is None:
channels = [3, 64, 192, 384, 256, 256, 4096, 4096]
if modify_sequence is None:
modify_sequence = lambda x: x
sequence = modify_sequence([
('conv1', nn.Conv2d(channels[0], channels[1],
kernel_size=11, stride=4, padding=2)),
('relu1', nn.ReLU(inplace=True)),
('pool1', nn.MaxPool2d(kernel_size=3, stride=1 if halfsize else 2)),
('conv2', nn.Conv2d(channels[1], channels[2],
kernel_size=5, padding=2)),
('relu2', nn.ReLU(inplace=True)),
('pool2', nn.MaxPool2d(kernel_size=3, stride=2)),
('conv3', nn.Conv2d(channels[2], channels[3],
kernel_size=3, padding=1)),
('relu3', nn.ReLU(inplace=True)),
('conv4', nn.Conv2d(channels[3], channels[4],
kernel_size=3, padding=1)),
('relu4', nn.ReLU(inplace=True)),
('conv5', nn.Conv2d(channels[4], channels[5],
kernel_size=3, padding=1)),
('relu5', nn.ReLU(inplace=True)),
('pool5', nn.MaxPool2d(kernel_size=3, stride=2)),
('flatten', Vectorize()),
('dropout6', nn.Dropout()),
('fc6', nn.Linear(channels[5] * 6 * 6, channels[6])),
('relu6', nn.ReLU(inplace=True)),
('dropout7', nn.Dropout()),
('fc7', nn.Linear(channels[6], channels[7])),
('relu7', nn.ReLU(inplace=True)),
('fc8', nn.Linear(channels[7], num_classes))
])
super(CustomAlexNet, self).__init__()
for name, layer in sequence:
setattr(self, name, layer)
self.extra_output = extra_output
def forward(self, x):
extra = []
for name, module in self._modules.items():
x = module(x)
if self.extra_output and name in self.extra_output:
extra.append(x)
if self.extra_output:
return (x,) + tuple(extra)
return x
def load_state_dict(self, state_dict, **kwargs):
'''
Translates from pytorch's AlexNet parameter names
into the custom parameter names.
'''
custom_names = [
('features.0.', 'conv1.'),
('features.3.', 'conv2.'),
('features.6.', 'conv3.'),
('features.8.', 'conv4.'),
('features.10.', 'conv5.'),
('classifier.1.', 'fc6.'),
('classifier.4.', 'fc7.'),
('classifier.6.', 'fc8.')
]
custom_state_dict = {}
for k, v in state_dict.items():
for op, np in custom_names:
if k.startswith(op):
k = np + k[len(op):]
break
custom_state_dict[k] = v
super(CustomAlexNet, self).load_state_dict(custom_state_dict, **kwargs)
class Vectorize(nn.Module):
def __init__(self):
super(Vectorize, self).__init__()
def forward(self, x):
x = x.view(x.size(0), int(numpy.prod(x.size()[1:])))
return x
class GlobalAveragePool2d(nn.Module):
def __init__(self):
super(GlobalAveragePool2d, self).__init__()
def forward(self, x):
x = torch.mean(x.view(x.size(0), x.size(1), -1), dim=2)
return x
if __name__ == '__main__':
import torch.utils.model_zoo as model_zoo
# Verify that at the default settings, pytorch standard pretrained
# models can be loaded into each of the custom nets.
print('Loading alexnet')
model = CustomAlexNet()
model.load_state_dict(model_zoo.load_url(alexnet_model_urls['alexnet']))
print('Loading resnet18')
model = CustomResNet(18)
model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet18']))
print('Loading resnet34')
model = CustomResNet(34)
model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet34']))
print('Loading resnet50')
model = CustomResNet(50)
model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet50']))
print('Loading resnet101')
model = CustomResNet(101)
model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet101']))
print('Loading resnet152')
model = CustomResNet(152)
model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet152']))