Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import pipeline, AutoTokenizer | |
| # Load the Hugging Face model | |
| model_path = "patrixtano/mt5-base-anaphora_czech_6e" | |
| model_pipeline = pipeline("text2text-generation", model=model_path) | |
| tokenizer = AutoTokenizer.from_pretrained("patrixtano/mt5-base-anaphora_czech_6e") | |
| def predict(text_input): | |
| """ | |
| Generate a prediction for the given input text using the Hugging Face model. | |
| """ | |
| input_length = len(tokenizer(text_input)["input_ids"]) | |
| generation_parameters = { | |
| "min_length": input_length + 5, # Set your desired minimum length | |
| "max_length": input_length + 10 # Set your desired maximum length | |
| } | |
| try: | |
| result = model_pipeline(text_input, **generation_parameters) | |
| # Extract and return the generated text | |
| return result[0]["generated_text"] | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| examples = ["""Miluji ženu s vařečkou, <ana>která</ana> umí vařit.""", | |
| """Zřejmě to musel fotit nějaký chatař odsousedství, nebo by to mohl taky fotit můj manžel, ale | |
| <ana>on</ana> se obyčejně k aparátu moc neměl.""", | |
| """Tomáš se domluvil s Jardou, že <ana>ho</ana> odveze na nádraží."""] | |
| # Define the Gradio interface | |
| interface = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Textbox(lines=5, label="Input Text"), | |
| outputs=gr.Textbox(label="Model Output"), | |
| title="Anaphora resolution demo", | |
| description="""Enter text into the \"Input Text\" box, include <ana> </ana> tags around the anaphora | |
| which is to be resolved. The model generates a copy of the text with <ant> </ant> tags marking the | |
| predicted antecedent. This demo uses the model based on the mT5 base size model.""", | |
| theme="default", | |
| examples=examples | |
| ) | |
| # Launch the Gradio app | |
| if __name__ == "__main__": | |
| interface.launch(share=True) | |