Serhiy Stetskovych
initial commit
81470e4
"""
Implementation of model from:
Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using
Convolutional Recurrent Neural Networks" (2019)
Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d
"""
import torch
from torch import nn
class JDCNet(nn.Module):
"""
Joint Detection and Classification Network model for singing voice melody.
"""
def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01):
super().__init__()
self.num_class = num_class
# input = (b, 1, 31, 513), b = batch size
self.conv_block = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False), # out: (b, 64, 31, 513)
nn.BatchNorm2d(num_features=64),
nn.LeakyReLU(leaky_relu_slope, inplace=True),
nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513)
)
# res blocks
self.res_block1 = ResBlock(in_channels=64, out_channels=128) # (b, 128, 31, 128)
self.res_block2 = ResBlock(in_channels=128, out_channels=192) # (b, 192, 31, 32)
self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8)
# pool block
self.pool_block = nn.Sequential(
nn.BatchNorm2d(num_features=256),
nn.LeakyReLU(leaky_relu_slope, inplace=True),
nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2)
nn.Dropout(p=0.2),
)
# maxpool layers (for auxiliary network inputs)
# in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2)
self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40))
# in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2)
self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20))
# in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2)
self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10))
# in = (b, 640, 31, 2), out = (b, 256, 31, 2)
self.detector_conv = nn.Sequential(
nn.Conv2d(640, 256, 1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(leaky_relu_slope, inplace=True),
nn.Dropout(p=0.2),
)
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
self.bilstm_classifier = nn.LSTM(
input_size=512, hidden_size=256,
batch_first=True, bidirectional=True) # (b, 31, 512)
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
self.bilstm_detector = nn.LSTM(
input_size=512, hidden_size=256,
batch_first=True, bidirectional=True) # (b, 31, 512)
# input: (b * 31, 512)
self.classifier = nn.Linear(in_features=512, out_features=self.num_class) # (b * 31, num_class)
# input: (b * 31, 512)
self.detector = nn.Linear(in_features=512, out_features=2) # (b * 31, 2) - binary classifier
# initialize weights
self.apply(self.init_weights)
def get_feature_GAN(self, x):
seq_len = x.shape[-2]
x = x.float().transpose(-1, -2)
convblock_out = self.conv_block(x)
resblock1_out = self.res_block1(convblock_out)
resblock2_out = self.res_block2(resblock1_out)
resblock3_out = self.res_block3(resblock2_out)
poolblock_out = self.pool_block[0](resblock3_out)
poolblock_out = self.pool_block[1](poolblock_out)
return poolblock_out.transpose(-1, -2)
def get_feature(self, x):
seq_len = x.shape[-2]
x = x.float().transpose(-1, -2)
convblock_out = self.conv_block(x)
resblock1_out = self.res_block1(convblock_out)
resblock2_out = self.res_block2(resblock1_out)
resblock3_out = self.res_block3(resblock2_out)
poolblock_out = self.pool_block[0](resblock3_out)
poolblock_out = self.pool_block[1](poolblock_out)
return self.pool_block[2](poolblock_out)
def forward(self, x):
"""
Returns:
classification_prediction, detection_prediction
sizes: (b, 31, 722), (b, 31, 2)
"""
###############################
# forward pass for classifier #
###############################
seq_len = x.shape[-1]
x = x.float().transpose(-1, -2)
convblock_out = self.conv_block(x)
resblock1_out = self.res_block1(convblock_out)
resblock2_out = self.res_block2(resblock1_out)
resblock3_out = self.res_block3(resblock2_out)
poolblock_out = self.pool_block[0](resblock3_out)
poolblock_out = self.pool_block[1](poolblock_out)
GAN_feature = poolblock_out.transpose(-1, -2)
poolblock_out = self.pool_block[2](poolblock_out)
# (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512)
classifier_out = poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512))
classifier_out, _ = self.bilstm_classifier(classifier_out) # ignore the hidden states
classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512)
classifier_out = self.classifier(classifier_out)
classifier_out = classifier_out.view((-1, seq_len, self.num_class)) # (b, 31, num_class)
# sizes: (b, 31, 722), (b, 31, 2)
# classifier output consists of predicted pitch classes per frame
# detector output consists of: (isvoice, notvoice) estimates per frame
return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out
@staticmethod
def init_weights(m):
if isinstance(m, nn.Linear):
nn.init.kaiming_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight)
elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell):
for p in m.parameters():
if p.data is None:
continue
if len(p.shape) >= 2:
nn.init.orthogonal_(p.data)
else:
nn.init.normal_(p.data)
class ResBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01):
super().__init__()
self.downsample = in_channels != out_channels
# BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper
self.pre_conv = nn.Sequential(
nn.BatchNorm2d(num_features=in_channels),
nn.LeakyReLU(leaky_relu_slope, inplace=True),
nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only
)
# conv layers
self.conv = nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU(leaky_relu_slope, inplace=True),
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
)
# 1 x 1 convolution layer to match the feature dimensions
self.conv1by1 = None
if self.downsample:
self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
def forward(self, x):
x = self.pre_conv(x)
if self.downsample:
x = self.conv(x) + self.conv1by1(x)
else:
x = self.conv(x) + x
return x