Spaces:
Runtime error
Runtime error
Serhiy Stetskovych
commited on
Commit
·
7eda31a
1
Parent(s):
ba9220a
Add vocos.
Browse files- app.py +61 -18
- checkpoint_epoch=499.ckpt +0 -3
- checkpoint_epoch=649.ckpt +0 -3
- g_00120000 → checkpoints/pytorch_model.bin +2 -2
- config.yaml +33 -0
- g_00140000_m +0 -3
app.py
CHANGED
@@ -6,6 +6,7 @@ import gradio as gr
|
|
6 |
import numpy as np
|
7 |
|
8 |
import torch
|
|
|
9 |
|
10 |
|
11 |
from hifigan.config import v1
|
@@ -19,17 +20,23 @@ from pflow.text import text_to_sequence, sequence_to_text
|
|
19 |
from pflow.utils.utils import intersperse
|
20 |
from pflow.data.text_mel_datamodule import mel_spectrogram
|
21 |
from pflow.utils.model import normalize
|
|
|
22 |
|
23 |
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
transform = torchaudio.transforms.Vol(gain=-32, gain_type="db")
|
29 |
wav, sr = torchaudio.load('prompt.wav')
|
30 |
|
31 |
prompt = mel_spectrogram(
|
32 |
-
|
33 |
1024,
|
34 |
80,
|
35 |
22050,
|
@@ -42,6 +49,7 @@ prompt = mel_spectrogram(
|
|
42 |
|
43 |
|
44 |
|
|
|
45 |
def process_text(text: str, device: torch.device):
|
46 |
x = torch.tensor(
|
47 |
intersperse(text_to_sequence(text, ["ukr_cleaners"]), 0),
|
@@ -65,12 +73,25 @@ def load_hifigan(checkpoint_path, device):
|
|
65 |
|
66 |
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
def to_waveform(mel, vocoder, denoiser=None):
|
69 |
-
|
70 |
-
if denoiser is not None:
|
71 |
-
audio = denoiser(audio.squeeze(), strength=0.00025).cpu().squeeze()
|
72 |
|
73 |
-
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
|
@@ -90,11 +111,16 @@ def get_device():
|
|
90 |
device = get_device()
|
91 |
model = pflowTTS.load_from_checkpoint(PFLOW_MODEL_PATH, map_location=device)
|
92 |
_ = model.eval()
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
@torch.inference_mode()
|
97 |
-
def synthesise(text,
|
98 |
if len(text) > 1000:
|
99 |
raise gr.Error("Текст повинен бути коротшим за 1000 символів.")
|
100 |
|
@@ -104,21 +130,27 @@ def synthesise(text, temperature, speed):
|
|
104 |
text_processed["x"].to(device),
|
105 |
text_processed["x_lengths"].to(device),
|
106 |
n_timesteps=40,
|
107 |
-
temperature=
|
108 |
length_scale=1/speed,
|
109 |
prompt=normalize(prompt, model.mel_mean, model.mel_std).to(device),
|
110 |
-
|
|
|
|
|
111 |
)
|
112 |
-
|
|
|
|
|
|
|
|
|
113 |
|
114 |
-
return text_processed['x_phones'][1::2], (22050,
|
115 |
|
116 |
|
117 |
description = f'''
|
118 |
# Експериментальна апка для генерації аудіо з тексту.
|
119 |
|
120 |
pflow checkpoint {PFLOW_MODEL_PATH}
|
121 |
-
vocoder:
|
122 |
'''
|
123 |
|
124 |
|
@@ -128,17 +160,28 @@ if __name__ == "__main__":
|
|
128 |
description=description,
|
129 |
inputs=[
|
130 |
gr.Text(label='Текст для синтезу:', lines=5, max_lines=10),
|
131 |
-
gr.Slider(minimum=0.0, maximum=1.0, label="Температура", value=0.4),
|
132 |
gr.Slider(minimum=0.6, maximum=2.0, label="Швидкість", value=1.0)
|
133 |
],
|
134 |
outputs=[
|
135 |
gr.Text(label='Фонемізований текст:', lines=5),
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
gr.Audio(
|
137 |
-
label="
|
138 |
autoplay=False,
|
139 |
streaming=False,
|
140 |
type="numpy",
|
141 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
],
|
144 |
allow_flagging ='manual',
|
|
|
6 |
import numpy as np
|
7 |
|
8 |
import torch
|
9 |
+
import json
|
10 |
|
11 |
|
12 |
from hifigan.config import v1
|
|
|
20 |
from pflow.utils.utils import intersperse
|
21 |
from pflow.data.text_mel_datamodule import mel_spectrogram
|
22 |
from pflow.utils.model import normalize
|
23 |
+
from vocos import Vocos
|
24 |
|
25 |
|
26 |
|
27 |
+
|
28 |
+
|
29 |
+
PFLOW_MODEL_PATH = 'checkpoints/checkpoint_epoch=649.ckpt'
|
30 |
+
#PFLOW_MODEL_PATH = 'checkpoint_m_epoch=054.ckpt'
|
31 |
+
VOCODER_MODEL_PATH = 'checkpoints/pytorch_model.bin'
|
32 |
+
HIFIGAN_MODEL_PATH = 'checkpoints/g_00120000'
|
33 |
+
|
34 |
|
35 |
transform = torchaudio.transforms.Vol(gain=-32, gain_type="db")
|
36 |
wav, sr = torchaudio.load('prompt.wav')
|
37 |
|
38 |
prompt = mel_spectrogram(
|
39 |
+
wav,
|
40 |
1024,
|
41 |
80,
|
42 |
22050,
|
|
|
49 |
|
50 |
|
51 |
|
52 |
+
|
53 |
def process_text(text: str, device: torch.device):
|
54 |
x = torch.tensor(
|
55 |
intersperse(text_to_sequence(text, ["ukr_cleaners"]), 0),
|
|
|
73 |
|
74 |
|
75 |
|
76 |
+
|
77 |
+
def load_vocos(checkpoint_path, config_path, device):
|
78 |
+
model = Vocos.from_hparams(config_path)
|
79 |
+
|
80 |
+
raw_model = torch.load(checkpoint_path, map_location=torch.device('cpu'))
|
81 |
+
raw_model = raw_model if 'state_dict' not in raw_model else raw_model['state_dict']
|
82 |
+
model.load_state_dict(raw_model, strict=False)
|
83 |
+
model.eval()
|
84 |
+
return model
|
85 |
+
|
86 |
+
|
87 |
def to_waveform(mel, vocoder, denoiser=None):
|
88 |
+
return vocoder.decode(mel).cpu().squeeze()
|
|
|
|
|
89 |
|
90 |
+
# audio = vocoder(mel).clamp(-1, 1)
|
91 |
+
# if denoiser is not None:
|
92 |
+
# audio = denoiser(audio.squeeze(), strength=0.00025).cpu().squeeze()
|
93 |
+
|
94 |
+
# return audio.cpu().squeeze()
|
95 |
|
96 |
|
97 |
|
|
|
111 |
device = get_device()
|
112 |
model = pflowTTS.load_from_checkpoint(PFLOW_MODEL_PATH, map_location=device)
|
113 |
_ = model.eval()
|
114 |
+
|
115 |
+
|
116 |
+
#hifigan = load_hifigan(HIFIGAN_MODEL_PATH, device)
|
117 |
+
vocos = load_vocos(VOCODER_MODEL_PATH, 'config.yaml', device)
|
118 |
+
#vocos_44100 = load_vocos('checkpoints/vocos_checkpoint_epoch=4_step=93440_val_loss=5.2596_44100_10.ckpt', 'vocos.yaml', device)
|
119 |
+
denoiser = None#Denoiser(vocoder, mode="zeros")
|
120 |
+
|
121 |
|
122 |
@torch.inference_mode()
|
123 |
+
def synthesise(text, speed):
|
124 |
if len(text) > 1000:
|
125 |
raise gr.Error("Текст повинен бути коротшим за 1000 символів.")
|
126 |
|
|
|
130 |
text_processed["x"].to(device),
|
131 |
text_processed["x_lengths"].to(device),
|
132 |
n_timesteps=40,
|
133 |
+
temperature=0.0,
|
134 |
length_scale=1/speed,
|
135 |
prompt=normalize(prompt, model.mel_mean, model.mel_std).to(device),
|
136 |
+
|
137 |
+
guidance_scale=1.5
|
138 |
+
|
139 |
)
|
140 |
+
waveform_vocos = vocos.decode(output["mel"]).cpu().squeeze()
|
141 |
+
#waveform_vocos_44100 = vocos_44100.decode(output["mel"]).cpu().squeeze()
|
142 |
+
#waveform_hifigan = hifigan(output["mel"]).clamp(-1, 1).cpu().squeeze()
|
143 |
+
#transform = torchaudio.transforms.Vol(gain=-18, gain_type="db")
|
144 |
+
|
145 |
|
146 |
+
return text_processed['x_phones'][1::2], (22050, waveform_vocos.numpy())
|
147 |
|
148 |
|
149 |
description = f'''
|
150 |
# Експериментальна апка для генерації аудіо з тексту.
|
151 |
|
152 |
pflow checkpoint {PFLOW_MODEL_PATH}
|
153 |
+
vocoder: Vocos - {VOCODER_MODEL_PATH}
|
154 |
'''
|
155 |
|
156 |
|
|
|
160 |
description=description,
|
161 |
inputs=[
|
162 |
gr.Text(label='Текст для синтезу:', lines=5, max_lines=10),
|
|
|
163 |
gr.Slider(minimum=0.6, maximum=2.0, label="Швидкість", value=1.0)
|
164 |
],
|
165 |
outputs=[
|
166 |
gr.Text(label='Фонемізований текст:', lines=5),
|
167 |
+
# gr.Audio(
|
168 |
+
# label="Vocos 44100 аудіо:",
|
169 |
+
# autoplay=False,
|
170 |
+
# streaming=False,
|
171 |
+
# type="numpy",
|
172 |
+
# ),
|
173 |
gr.Audio(
|
174 |
+
label="Vocos аудіо:",
|
175 |
autoplay=False,
|
176 |
streaming=False,
|
177 |
type="numpy",
|
178 |
+
),
|
179 |
+
# gr.Audio(
|
180 |
+
# label="HIFIGAN аудіо:",
|
181 |
+
# autoplay=False,
|
182 |
+
# streaming=False,
|
183 |
+
# type="numpy",
|
184 |
+
# )
|
185 |
|
186 |
],
|
187 |
allow_flagging ='manual',
|
checkpoint_epoch=499.ckpt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:39051170c6c0d9abce47d0073f796912d5ce3854ade8f707cb30333f50160d99
|
3 |
-
size 279562867
|
|
|
|
|
|
|
|
checkpoint_epoch=649.ckpt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f86bc69330121d97d876f8cc38a8f7c36c443be40b2b0b4389b9684d4c351c6a
|
3 |
-
size 279563122
|
|
|
|
|
|
|
|
g_00120000 → checkpoints/pytorch_model.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0af7b6f4b153819ada44a917135acf33944cdbb70cde0701eda3d100153799c7
|
3 |
+
size 54051047
|
config.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_lightning==1.8.6
|
2 |
+
|
3 |
+
feature_extractor:
|
4 |
+
class_path: vocos.feature_extractors.MelSpectrogramFeatures
|
5 |
+
init_args:
|
6 |
+
sample_rate: 22050
|
7 |
+
n_fft: 1024
|
8 |
+
hop_length: 256
|
9 |
+
n_mels: 80
|
10 |
+
padding: same
|
11 |
+
f_min: 0
|
12 |
+
f_max: 8000
|
13 |
+
norm: "slaney"
|
14 |
+
mel_scale: "slaney"
|
15 |
+
|
16 |
+
|
17 |
+
backbone:
|
18 |
+
class_path: vocos.models.VocosBackbone
|
19 |
+
init_args:
|
20 |
+
input_channels: 80
|
21 |
+
dim: 512
|
22 |
+
intermediate_dim: 1536
|
23 |
+
num_layers: 8
|
24 |
+
|
25 |
+
head:
|
26 |
+
class_path: vocos.heads.ISTFTHead
|
27 |
+
init_args:
|
28 |
+
dim: 512
|
29 |
+
n_fft: 1024
|
30 |
+
hop_length: 256
|
31 |
+
padding: same
|
32 |
+
|
33 |
+
|
g_00140000_m
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c4edf30ac1bbb52cd250f0c38d615df23978d39ee8415c2a4c636344367adfd1
|
3 |
-
size 55824433
|
|
|
|
|
|
|
|