Spaces:
Running
on
Zero
Running
on
Zero
""" from https://github.com/jaywalnut310/glow-tts """ | |
import math | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
import pflow.utils as utils | |
from pflow.utils.model import sequence_mask | |
log = utils.get_pylogger(__name__) | |
class LayerNorm(nn.Module): | |
def __init__(self, channels, eps=1e-4): | |
super().__init__() | |
self.channels = channels | |
self.eps = eps | |
self.gamma = torch.nn.Parameter(torch.ones(channels)) | |
self.beta = torch.nn.Parameter(torch.zeros(channels)) | |
def forward(self, x): | |
n_dims = len(x.shape) | |
mean = torch.mean(x, 1, keepdim=True) | |
variance = torch.mean((x - mean) ** 2, 1, keepdim=True) | |
x = (x - mean) * torch.rsqrt(variance + self.eps) | |
shape = [1, -1] + [1] * (n_dims - 2) | |
x = x * self.gamma.view(*shape) + self.beta.view(*shape) | |
return x | |
class ConvReluNorm(nn.Module): | |
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): | |
super().__init__() | |
self.in_channels = in_channels | |
self.hidden_channels = hidden_channels | |
self.out_channels = out_channels | |
self.kernel_size = kernel_size | |
self.n_layers = n_layers | |
self.p_dropout = p_dropout | |
self.conv_layers = torch.nn.ModuleList() | |
self.norm_layers = torch.nn.ModuleList() | |
self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) | |
self.norm_layers.append(LayerNorm(hidden_channels)) | |
self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout)) | |
for _ in range(n_layers - 1): | |
self.conv_layers.append( | |
torch.nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2) | |
) | |
self.norm_layers.append(LayerNorm(hidden_channels)) | |
self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1) | |
self.proj.weight.data.zero_() | |
self.proj.bias.data.zero_() | |
def forward(self, x, x_mask): | |
x_org = x | |
for i in range(self.n_layers): | |
x = self.conv_layers[i](x * x_mask) | |
x = self.norm_layers[i](x) | |
x = self.relu_drop(x) | |
x = x_org + self.proj(x) | |
return x * x_mask | |
class DurationPredictor(nn.Module): | |
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout): | |
super().__init__() | |
self.in_channels = in_channels | |
self.filter_channels = filter_channels | |
self.p_dropout = p_dropout | |
self.drop = torch.nn.Dropout(p_dropout) | |
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2) | |
self.norm_1 = LayerNorm(filter_channels) | |
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2) | |
self.norm_2 = LayerNorm(filter_channels) | |
self.proj = torch.nn.Conv1d(filter_channels, 1, 1) | |
def forward(self, x, x_mask): | |
x = self.conv_1(x * x_mask) | |
x = torch.relu(x) | |
x = self.norm_1(x) | |
x = self.drop(x) | |
x = self.conv_2(x * x_mask) | |
x = torch.relu(x) | |
x = self.norm_2(x) | |
x = self.drop(x) | |
x = self.proj(x * x_mask) | |
return x * x_mask | |
class RotaryPositionalEmbeddings(nn.Module): | |
""" | |
## RoPE module | |
Rotary encoding transforms pairs of features by rotating in the 2D plane. | |
That is, it organizes the $d$ features as $\frac{d}{2}$ pairs. | |
Each pair can be considered a coordinate in a 2D plane, and the encoding will rotate it | |
by an angle depending on the position of the token. | |
""" | |
def __init__(self, d: int, base: int = 10_000): | |
r""" | |
* `d` is the number of features $d$ | |
* `base` is the constant used for calculating $\Theta$ | |
""" | |
super().__init__() | |
self.base = base | |
self.d = int(d) | |
self.cos_cached = None | |
self.sin_cached = None | |
def _build_cache(self, x: torch.Tensor): | |
r""" | |
Cache $\cos$ and $\sin$ values | |
""" | |
# Return if cache is already built | |
if self.cos_cached is not None and x.shape[0] <= self.cos_cached.shape[0]: | |
return | |
# Get sequence length | |
seq_len = x.shape[0] | |
# $\Theta = {\theta_i = 10000^{-\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$ | |
theta = 1.0 / (self.base ** (torch.arange(0, self.d, 2).float() / self.d)).to(x.device) | |
# Create position indexes `[0, 1, ..., seq_len - 1]` | |
seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device) | |
# Calculate the product of position index and $\theta_i$ | |
idx_theta = torch.einsum("n,d->nd", seq_idx, theta) | |
# Concatenate so that for row $m$ we have | |
# $[m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}, m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}]$ | |
idx_theta2 = torch.cat([idx_theta, idx_theta], dim=1) | |
# Cache them | |
self.cos_cached = idx_theta2.cos()[:, None, None, :] | |
self.sin_cached = idx_theta2.sin()[:, None, None, :] | |
def _neg_half(self, x: torch.Tensor): | |
# $\frac{d}{2}$ | |
d_2 = self.d // 2 | |
# Calculate $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$ | |
return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1) | |
def forward(self, x: torch.Tensor): | |
""" | |
* `x` is the Tensor at the head of a key or a query with shape `[seq_len, batch_size, n_heads, d]` | |
""" | |
# Cache $\cos$ and $\sin$ values | |
x = rearrange(x, "b h t d -> t b h d") | |
self._build_cache(x) | |
# Split the features, we can choose to apply rotary embeddings only to a partial set of features. | |
x_rope, x_pass = x[..., : self.d], x[..., self.d :] | |
# Calculate | |
# $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$ | |
neg_half_x = self._neg_half(x_rope) | |
x_rope = (x_rope * self.cos_cached[: x.shape[0]]) + (neg_half_x * self.sin_cached[: x.shape[0]]) | |
return rearrange(torch.cat((x_rope, x_pass), dim=-1), "t b h d -> b h t d") | |
class MultiHeadAttention(nn.Module): | |
def __init__( | |
self, | |
channels, | |
out_channels, | |
n_heads, | |
heads_share=True, | |
p_dropout=0.0, | |
proximal_bias=False, | |
proximal_init=False, | |
): | |
super().__init__() | |
assert channels % n_heads == 0 | |
self.channels = channels | |
self.out_channels = out_channels | |
self.n_heads = n_heads | |
self.heads_share = heads_share | |
self.proximal_bias = proximal_bias | |
self.p_dropout = p_dropout | |
self.attn = None | |
self.k_channels = channels // n_heads | |
self.conv_q = torch.nn.Conv1d(channels, channels, 1) | |
self.conv_k = torch.nn.Conv1d(channels, channels, 1) | |
self.conv_v = torch.nn.Conv1d(channels, channels, 1) | |
# from https://nn.labml.ai/transformers/rope/index.html | |
self.query_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5) | |
self.key_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5) | |
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1) | |
self.drop = torch.nn.Dropout(p_dropout) | |
torch.nn.init.xavier_uniform_(self.conv_q.weight) | |
torch.nn.init.xavier_uniform_(self.conv_k.weight) | |
if proximal_init: | |
self.conv_k.weight.data.copy_(self.conv_q.weight.data) | |
self.conv_k.bias.data.copy_(self.conv_q.bias.data) | |
torch.nn.init.xavier_uniform_(self.conv_v.weight) | |
def forward(self, x, c, attn_mask=None): | |
q = self.conv_q(x) | |
k = self.conv_k(c) | |
v = self.conv_v(c) | |
x, self.attn = self.attention(q, k, v, mask=attn_mask) | |
x = self.conv_o(x) | |
return x | |
def attention(self, query, key, value, mask=None): | |
b, d, t_s, t_t = (*key.size(), query.size(2)) | |
query = rearrange(query, "b (h c) t-> b h t c", h=self.n_heads) | |
key = rearrange(key, "b (h c) t-> b h t c", h=self.n_heads) | |
value = rearrange(value, "b (h c) t-> b h t c", h=self.n_heads) | |
query = self.query_rotary_pe(query) | |
key = self.key_rotary_pe(key) | |
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels) | |
if self.proximal_bias: | |
assert t_s == t_t, "Proximal bias is only available for self-attention." | |
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) | |
if mask is not None: | |
scores = scores.masked_fill(mask == 0, -1e4) | |
p_attn = torch.nn.functional.softmax(scores, dim=-1) | |
p_attn = self.drop(p_attn) | |
output = torch.matmul(p_attn, value) | |
output = output.transpose(2, 3).contiguous().view(b, d, t_t) | |
return output, p_attn | |
def _attention_bias_proximal(length): | |
r = torch.arange(length, dtype=torch.float32) | |
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) | |
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) | |
class FFN(nn.Module): | |
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.filter_channels = filter_channels | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2) | |
self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size, padding=kernel_size // 2) | |
self.drop = torch.nn.Dropout(p_dropout) | |
def forward(self, x, x_mask): | |
x = self.conv_1(x * x_mask) | |
x = torch.relu(x) | |
x = self.drop(x) | |
x = self.conv_2(x * x_mask) | |
return x * x_mask | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size=1, | |
p_dropout=0.0, | |
**kwargs, | |
): | |
super().__init__() | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.drop = torch.nn.Dropout(p_dropout) | |
self.attn_layers = torch.nn.ModuleList() | |
self.norm_layers_1 = torch.nn.ModuleList() | |
self.ffn_layers = torch.nn.ModuleList() | |
self.norm_layers_2 = torch.nn.ModuleList() | |
for _ in range(self.n_layers): | |
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout)) | |
self.norm_layers_1.append(LayerNorm(hidden_channels)) | |
self.ffn_layers.append( | |
FFN( | |
hidden_channels, | |
hidden_channels, | |
filter_channels, | |
kernel_size, | |
p_dropout=p_dropout, | |
) | |
) | |
self.norm_layers_2.append(LayerNorm(hidden_channels)) | |
def forward(self, x, x_mask): | |
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) | |
for i in range(self.n_layers): | |
x = x * x_mask | |
y = self.attn_layers[i](x, x, attn_mask) | |
y = self.drop(y) | |
x = self.norm_layers_1[i](x + y) | |
y = self.ffn_layers[i](x, x_mask) | |
y = self.drop(y) | |
x = self.norm_layers_2[i](x + y) | |
x = x * x_mask | |
return x | |
class TextEncoder(nn.Module): | |
def __init__( | |
self, | |
encoder_type, | |
encoder_params, | |
duration_predictor_params, | |
n_vocab, | |
n_spks=1, | |
spk_emb_dim=128, | |
): | |
super().__init__() | |
self.encoder_type = encoder_type | |
self.n_vocab = n_vocab | |
self.n_feats = encoder_params.n_feats | |
self.n_channels = encoder_params.n_channels | |
self.spk_emb_dim = spk_emb_dim | |
self.n_spks = n_spks | |
self.emb = torch.nn.Embedding(n_vocab, self.n_channels) | |
torch.nn.init.normal_(self.emb.weight, 0.0, self.n_channels**-0.5) | |
if encoder_params.prenet: | |
self.prenet = ConvReluNorm( | |
self.n_channels, | |
self.n_channels, | |
self.n_channels, | |
kernel_size=5, | |
n_layers=3, | |
p_dropout=0.5, | |
) | |
else: | |
self.prenet = lambda x, x_mask: x | |
self.encoder = Encoder( | |
encoder_params.n_channels + (spk_emb_dim if n_spks > 1 else 0), | |
encoder_params.filter_channels, | |
encoder_params.n_heads, | |
encoder_params.n_layers, | |
encoder_params.kernel_size, | |
encoder_params.p_dropout, | |
) | |
self.encoder_dp = Encoder( | |
encoder_params.n_channels + (spk_emb_dim if n_spks > 1 else 0), | |
encoder_params.filter_channels, | |
encoder_params.n_heads, | |
encoder_params.n_layers, | |
encoder_params.kernel_size, | |
encoder_params.p_dropout, | |
) | |
self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1) | |
# self.proj_v = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1) | |
self.proj_w = DurationPredictor( | |
self.n_channels + (spk_emb_dim if n_spks > 1 else 0), | |
duration_predictor_params.filter_channels_dp, | |
duration_predictor_params.kernel_size, | |
duration_predictor_params.p_dropout, | |
) | |
def forward(self, x, x_lengths, spks=None): | |
"""Run forward pass to the transformer based encoder and duration predictor | |
Args: | |
x (torch.Tensor): text input | |
shape: (batch_size, max_text_length) | |
x_lengths (torch.Tensor): text input lengths | |
shape: (batch_size,) | |
spks (torch.Tensor, optional): speaker ids. Defaults to None. | |
shape: (batch_size,) | |
Returns: | |
mu (torch.Tensor): average output of the encoder | |
shape: (batch_size, n_feats, max_text_length) | |
logw (torch.Tensor): log duration predicted by the duration predictor | |
shape: (batch_size, 1, max_text_length) | |
x_mask (torch.Tensor): mask for the text input | |
shape: (batch_size, 1, max_text_length) | |
""" | |
x = self.emb(x) * math.sqrt(self.n_channels) | |
x = torch.transpose(x, 1, -1) | |
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) | |
x = self.prenet(x, x_mask) | |
if self.n_spks > 1: | |
x = torch.cat([x, spks.unsqueeze(-1).repeat(1, 1, x.shape[-1])], dim=1) | |
x_dp = torch.detach(x) | |
x_dp = self.encoder_dp(x_dp, x_mask) | |
x = self.encoder(x, x_mask) | |
mu = self.proj_m(x) * x_mask | |
# logs = self.proj_v(x) * x_mask | |
# x_dp = torch.detach(x) | |
logw = self.proj_w(x_dp, x_mask) | |
return mu, logw, x_mask | |