patrickvonplaten commited on
Commit
e94f64d
·
1 Parent(s): 0711b9e
Files changed (1) hide show
  1. app.py +41 -78
app.py CHANGED
@@ -1,4 +1,4 @@
1
- from diffusers import DiffusionPipeline
2
  import gradio as gr
3
  import torch
4
  from PIL import Image
@@ -9,12 +9,16 @@ import random
9
 
10
 
11
  start_time = time.time()
12
- current_steps = 25
13
 
14
- PIPE = DiffusionPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None)
 
15
 
16
  device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
17
 
 
 
 
18
 
19
  def error_str(error, title="Error"):
20
  return (
@@ -27,17 +31,15 @@ def error_str(error, title="Error"):
27
 
28
  def inference(
29
  prompt,
30
- guidance,
 
 
31
  steps,
32
- n_images=1,
33
- width=512,
34
- height=512,
35
- seed=0,
36
- img=None,
37
- strength=0.5,
38
  neg_prompt="",
 
 
 
39
  ):
40
-
41
  print(psutil.virtual_memory()) # print memory usage
42
 
43
  if seed == 0:
@@ -46,63 +48,25 @@ def inference(
46
  generator = torch.Generator("cuda").manual_seed(seed)
47
 
48
  try:
49
- return (
50
- img_to_img(
51
- prompt,
52
- n_images,
53
- neg_prompt,
54
- img,
55
- strength,
56
- guidance,
57
- steps,
58
- width,
59
- height,
60
- generator,
61
- seed,
62
- ),
63
- f"Done. Seed: {seed}",
64
  )
 
 
 
65
  except Exception as e:
66
  return None, error_str(e)
67
 
68
 
69
- def img_to_img(
70
- prompt,
71
- n_images,
72
- neg_prompt,
73
- img,
74
- strength,
75
- guidance,
76
- steps,
77
- width,
78
- height,
79
- generator,
80
- seed,
81
- ):
82
- pipe = PIPE
83
-
84
- if torch.cuda.is_available():
85
- pipe = pipe.to("cuda")
86
- pipe.enable_xformers_memory_efficient_attention()
87
-
88
- ratio = min(height / img.height, width / img.width)
89
- img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
90
-
91
- result = pipe(
92
- prompt,
93
- negative_prompt=neg_prompt,
94
- num_images_per_prompt=n_images,
95
- image=img,
96
- num_inference_steps=int(steps),
97
- strength=strength,
98
- guidance_scale=guidance,
99
- generator=generator,
100
- )
101
-
102
- # return replace_nsfw_images(result)
103
- return result.images
104
-
105
-
106
  def replace_nsfw_images(results):
107
  for i in range(len(results.images)):
108
  if results.nsfw_content_detected[i]:
@@ -170,9 +134,6 @@ with gr.Blocks(css="style.css") as demo:
170
  )
171
 
172
  with gr.Row():
173
- guidance = gr.Slider(
174
- label="Guidance scale", value=7.5, maximum=15
175
- )
176
  steps = gr.Slider(
177
  label="Steps",
178
  value=current_steps,
@@ -197,25 +158,27 @@ with gr.Blocks(css="style.css") as demo:
197
  image = gr.Image(
198
  label="Image", height=256, tool="editor", type="pil"
199
  )
200
- strength = gr.Slider(
201
- label="Transformation strength",
202
- minimum=0,
203
- maximum=1,
204
- step=0.01,
205
- value=0.5,
 
 
 
206
  )
207
 
208
  inputs = [
209
  prompt,
210
- guidance,
 
 
211
  steps,
212
- n_images,
213
  width,
214
  height,
215
  seed,
216
- image,
217
- strength,
218
- neg_prompt,
219
  ]
220
  outputs = [gallery, error_output]
221
  prompt.submit(inference, inputs=inputs, outputs=outputs)
@@ -223,7 +186,7 @@ with gr.Blocks(css="style.css") as demo:
223
 
224
  ex = gr.Examples(
225
  [],
226
- inputs=[prompt, guidance, steps, neg_prompt],
227
  outputs=outputs,
228
  fn=inference,
229
  cache_examples=True,
 
1
+ from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
2
  import gradio as gr
3
  import torch
4
  from PIL import Image
 
9
 
10
 
11
  start_time = time.time()
12
+ current_steps = 15
13
 
14
+ pipe = DiffusionPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None)
15
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
16
 
17
  device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
18
 
19
+ if torch.cuda.is_available():
20
+ pipe = pipe.to("cuda")
21
+
22
 
23
  def error_str(error, title="Error"):
24
  return (
 
31
 
32
  def inference(
33
  prompt,
34
+ text_guidance_scale,
35
+ image_guidance_scale,
36
+ image,
37
  steps,
 
 
 
 
 
 
38
  neg_prompt="",
39
+ width=256,
40
+ height=256,
41
+ seed=0,
42
  ):
 
43
  print(psutil.virtual_memory()) # print memory usage
44
 
45
  if seed == 0:
 
48
  generator = torch.Generator("cuda").manual_seed(seed)
49
 
50
  try:
51
+ ratio = min(height / image.height, width / image.width)
52
+ image = image.resize((int(image.width * ratio), int(image.height * ratio)), Image.LANCZOS)
53
+
54
+ result = pipe(
55
+ prompt,
56
+ negative_prompt=neg_prompt,
57
+ image=image,
58
+ num_inference_steps=int(steps),
59
+ image_guidance_scale=image_guidance_scale,
60
+ guidance_scale=text_guidance_scale,
61
+ generator=generator,
 
 
 
 
62
  )
63
+
64
+ # return replace_nsfw_images(result)
65
+ return result.images, f"Done. Seed: {seed}"
66
  except Exception as e:
67
  return None, error_str(e)
68
 
69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  def replace_nsfw_images(results):
71
  for i in range(len(results.images)):
72
  if results.nsfw_content_detected[i]:
 
134
  )
135
 
136
  with gr.Row():
 
 
 
137
  steps = gr.Slider(
138
  label="Steps",
139
  value=current_steps,
 
158
  image = gr.Image(
159
  label="Image", height=256, tool="editor", type="pil"
160
  )
161
+ text_guidance_scale = gr.Slider(
162
+ label="Text Guidance Scale", minimum=1.0, value=5.5, maximum=15, step=0.1
163
+ )
164
+ image_guidance_scale = gr.Slider(
165
+ label="Image Guidance Scale",
166
+ minimum=1.0,
167
+ maximum=15,
168
+ step=0.1,
169
+ value=1.5,
170
  )
171
 
172
  inputs = [
173
  prompt,
174
+ text_guidance_scale,
175
+ image_guidance_scale,
176
+ image,
177
  steps,
178
+ neg_prompt,
179
  width,
180
  height,
181
  seed,
 
 
 
182
  ]
183
  outputs = [gallery, error_output]
184
  prompt.submit(inference, inputs=inputs, outputs=outputs)
 
186
 
187
  ex = gr.Examples(
188
  [],
189
+ inputs=[prompt, text_guidance_scale, image_guidance_scale, image, steps],
190
  outputs=outputs,
191
  fn=inference,
192
  cache_examples=True,