asr-th / app.py
patharanor's picture
test: updated text format and unittest
1b3124c
import gradio as gr
import torch
import numpy as np
from transformers import pipeline
from utils.thai_word import ThaiWord
from pythainlp.tokenize import word_tokenize
from collections import deque
from copy import deepcopy
MODEL_NAME = "biodatlab/whisper-th-medium-combined"
DEVICE = 0 if torch.cuda.is_available() else "cpu"
thw = ThaiWord()
# stride_length_s is a tuple of the left and right stride length.
# With only 1 number, both sides get the same stride, by default
# the stride_length on one side is 1/6th of the chunk_length_s
transcriber = pipeline(
"automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=DEVICE
)
def transcribe(audio):
result = ''
try:
sr, y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
text = transcriber(
{"sampling_rate": sr, "raw": y},
generate_kwargs={"language":"<|th|>", "task":"transcribe"},
return_timestamps=False,
batch_size=16
)["text"]
if text is not None:
# pretty text
tokens = word_tokenize(text, engine="attacut", join_broken_num=True)
print(tokens)
result = f'pretty: {thw.pretty(deque(deepcopy(tokens)))}\n\n original: {text}'
else:
result = 'โปรดลองพูดอีกครั้ง'
except Exception as e:
result = f'ไม่สามารถแปลงข้อความเสียงได้ โปรดลองอีกครั้ง\n\nพบข้อผิดพลาด: {str(e)}'
return result
demo = gr.Interface(
transcribe,
gr.Audio(sources=["microphone"]),
"text",
)
demo.launch()