|
import torch
|
|
from .position import PositionEmbeddingSine
|
|
|
|
|
|
def split_feature(feature,
|
|
num_splits=2,
|
|
channel_last=False,
|
|
):
|
|
if channel_last:
|
|
b, h, w, c = feature.size()
|
|
assert h % num_splits == 0 and w % num_splits == 0
|
|
|
|
b_new = b * num_splits * num_splits
|
|
h_new = h // num_splits
|
|
w_new = w // num_splits
|
|
|
|
feature = feature.view(b, num_splits, h // num_splits, num_splits, w // num_splits, c
|
|
).permute(0, 1, 3, 2, 4, 5).reshape(b_new, h_new, w_new, c)
|
|
else:
|
|
b, c, h, w = feature.size()
|
|
assert h % num_splits == 0 and w % num_splits == 0
|
|
|
|
b_new = b * num_splits * num_splits
|
|
h_new = h // num_splits
|
|
w_new = w // num_splits
|
|
|
|
feature = feature.view(b, c, num_splits, h // num_splits, num_splits, w // num_splits
|
|
).permute(0, 2, 4, 1, 3, 5).reshape(b_new, c, h_new, w_new)
|
|
|
|
return feature
|
|
|
|
|
|
def merge_splits(splits,
|
|
num_splits=2,
|
|
channel_last=False,
|
|
):
|
|
if channel_last:
|
|
b, h, w, c = splits.size()
|
|
new_b = b // num_splits // num_splits
|
|
|
|
splits = splits.view(new_b, num_splits, num_splits, h, w, c)
|
|
merge = splits.permute(0, 1, 3, 2, 4, 5).contiguous().view(
|
|
new_b, num_splits * h, num_splits * w, c)
|
|
else:
|
|
b, c, h, w = splits.size()
|
|
new_b = b // num_splits // num_splits
|
|
|
|
splits = splits.view(new_b, num_splits, num_splits, c, h, w)
|
|
merge = splits.permute(0, 3, 1, 4, 2, 5).contiguous().view(
|
|
new_b, c, num_splits * h, num_splits * w)
|
|
|
|
return merge
|
|
|
|
|
|
def normalize_img(img0, img1):
|
|
|
|
|
|
mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(img1.device)
|
|
std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(img1.device)
|
|
img0 = (img0 / 255. - mean) / std
|
|
img1 = (img1 / 255. - mean) / std
|
|
|
|
return img0, img1
|
|
|
|
|
|
def feature_add_position(feature0, feature1, attn_splits, feature_channels):
|
|
pos_enc = PositionEmbeddingSine(num_pos_feats=feature_channels // 2)
|
|
|
|
if attn_splits > 1:
|
|
feature0_splits = split_feature(feature0, num_splits=attn_splits)
|
|
feature1_splits = split_feature(feature1, num_splits=attn_splits)
|
|
|
|
position = pos_enc(feature0_splits)
|
|
|
|
feature0_splits = feature0_splits + position
|
|
feature1_splits = feature1_splits + position
|
|
|
|
feature0 = merge_splits(feature0_splits, num_splits=attn_splits)
|
|
feature1 = merge_splits(feature1_splits, num_splits=attn_splits)
|
|
else:
|
|
position = pos_enc(feature0)
|
|
|
|
feature0 = feature0 + position
|
|
feature1 = feature1 + position
|
|
|
|
return feature0, feature1
|
|
|