pop_k / model_run.py
patchbanks's picture
Update model_run.py
0eb93ba verified
import types
import copy
import torch
import math, os
from torch.nn import functional as F
import torch.nn as nn
RWKV_HEAD_QK_DIM = 2048
DEBUG_TIME = False
if os.environ['RWKV_RUN_DEVICE'] == 'cuda':
T_MAX = 2048
from torch.utils.cpp_extension import load
wkv_cuda = load(name="wkv", sources=["cuda/wkv_op.cpp", "cuda/wkv_cuda.cu"],
verbose=True, extra_cuda_cflags=['-res-usage', '--maxrregcount 60', '--use_fast_math', '-O3', '-Xptxas -O3', f'-DTmax={T_MAX}'])
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
ctx.B = B
ctx.T = T
ctx.C = C
assert T <= T_MAX
assert B * C % min(C, 1024) == 0
if '32' in os.environ['RWKV_FLOAT_MODE']:
w = -torch.exp(w.contiguous())
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
else:
w = -torch.exp(w.float().contiguous())
u = u.float().contiguous()
k = k.float().contiguous()
v = v.float().contiguous()
ctx.save_for_backward(w, u, k, v)
y = torch.empty((B, T, C), device='cuda', memory_format=torch.contiguous_format)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
if '32' in os.environ['RWKV_FLOAT_MODE']:
return y
elif os.environ['RWKV_FLOAT_MODE'] == 'fp16':
return y.half()
elif os.environ['RWKV_FLOAT_MODE'] == 'bf16':
return y.bfloat16()
@staticmethod
def backward(ctx, gy):
B = ctx.B
T = ctx.T
C = ctx.C
assert T <= T_MAX
assert B * C % min(C, 1024) == 0
w, u, k, v = ctx.saved_tensors
gw = torch.zeros((B, C), device='cuda').contiguous()
gu = torch.zeros((B, C), device='cuda').contiguous()
gk = torch.zeros((B, T, C), device='cuda').contiguous()
gv = torch.zeros((B, T, C), device='cuda').contiguous()
if '32' in os.environ['RWKV_FLOAT_MODE']:
wkv_cuda.backward(B, T, C, w, u, k, v, gy.contiguous(), gw, gu, gk, gv)
else:
wkv_cuda.backward(B, T, C, w, u, k, v, gy.float().contiguous(), gw, gu, gk, gv)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
if '32' in os.environ['RWKV_FLOAT_MODE']:
return (None, None, None, gw, gu, gk, gv)
elif os.environ['RWKV_FLOAT_MODE'] == 'fp16':
return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half())
elif os.environ['RWKV_FLOAT_MODE'] == 'bf16':
return (None, None, None, gw.bfloat16(), gu.bfloat16(), gk.bfloat16(), gv.bfloat16())
def RUN_CUDA(B, T, C, w, u, k, v):
return WKV.apply(B, T, C, w.cuda(), u.cuda(), k.cuda(), v.cuda())
RWKV_CFG = types.SimpleNamespace()
class RWKV_ChannelMix(nn.Module):
def __init__(self, layer_id):
super().__init__()
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0,0,1,-1))
self.time_mix_k = nn.Parameter(torch.ones(1, 1, RWKV_CFG.n_embd))
self.time_mix_r = nn.Parameter(torch.ones(1, 1, RWKV_CFG.n_embd))
hidden_sz = 4 * RWKV_CFG.n_embd
self.key = nn.Linear(RWKV_CFG.n_embd, hidden_sz, bias=False)
self.receptance = nn.Linear(RWKV_CFG.n_embd, RWKV_CFG.n_embd, bias=False)
self.value = nn.Linear(hidden_sz, RWKV_CFG.n_embd, bias=False)
def forward(self, x):
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
k = self.key(xk)
k = torch.square(torch.relu(k))
kv = self.value(k)
rkv = torch.sigmoid(self.receptance(xr)) * kv
return rkv
class RWKV_TimeMix(nn.Module):
def __init__(self, layer_id):
super().__init__()
self.layer_id = layer_id
self.time_decay = nn.Parameter(torch.ones(RWKV_CFG.n_embd))
self.time_first = nn.Parameter(torch.ones(RWKV_CFG.n_embd) * math.log(0.3))
self.time_shift = nn.ZeroPad2d((0,0,1,-1))
self.time_mix_k = nn.Parameter(torch.ones(1,1,RWKV_CFG.n_embd))
self.time_mix_v = nn.Parameter(torch.ones(1,1,RWKV_CFG.n_embd))
self.time_mix_r = nn.Parameter(torch.ones(1,1,RWKV_CFG.n_embd))
self.key = nn.Linear(RWKV_CFG.n_embd, RWKV_CFG.n_embd, bias=False)
self.value = nn.Linear(RWKV_CFG.n_embd, RWKV_CFG.n_embd, bias=False)
self.receptance = nn.Linear(RWKV_CFG.n_embd, RWKV_CFG.n_embd, bias=False)
self.output = nn.Linear(RWKV_CFG.n_embd, RWKV_CFG.n_embd, bias=False)
def forward(self, x):
B, T, C = x.size()
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
k = self.key(xk)
v = self.value(xv)
r = self.receptance(xr)
rwkv = torch.sigmoid(r) * RUN_CUDA(B, T, C, self.time_decay, self.time_first, k, v)
rwkv = self.output(rwkv)
return rwkv
class Block(nn.Module):
def __init__(self, layer_id):
super().__init__()
self.layer_id = layer_id
self.ln1 = nn.LayerNorm(RWKV_CFG.n_embd)
self.ln2 = nn.LayerNorm(RWKV_CFG.n_embd)
if self.layer_id == 0:
self.ln0 = nn.LayerNorm(RWKV_CFG.n_embd)
if self.layer_id == 0 and RWKV_CFG.model_type == 'RWKV-ffnPre':
self.ffnPre = RWKV_ChannelMix(layer_id+1000)
else:
self.att = RWKV_TimeMix(layer_id)
self.ffn = RWKV_ChannelMix(layer_id)
def forward(self, x):
if self.layer_id == 0:
x = self.ln0(x)
if self.layer_id == 0 and RWKV_CFG.model_type == 'RWKV-ffnPre':
x = x + self.ffnPre(self.ln1(x))
else:
x = x + self.att(self.ln1(x))
x = x + self.ffn(self.ln2(x))
return x
class RWKV_GPT(nn.Module):
def __init__(self, MODEL_NAME, RUN_DEVICE, model_type, vocab_size, n_layer, n_embd, ctx_len):
global RWKV_CFG
super().__init__()
RWKV_CFG.RUN_DEVICE = RUN_DEVICE
RWKV_CFG.model_type = model_type
RWKV_CFG.vocab_size = vocab_size
RWKV_CFG.n_layer = n_layer
RWKV_CFG.n_embd = n_embd
RWKV_CFG.ctx_len = ctx_len
print('\nloading RWKV-GPT', MODEL_NAME)
self.emb = nn.Embedding(vocab_size, n_embd)
self.blocks = nn.Sequential(*[Block(i) for i in range(n_layer)])
self.ln_out = nn.LayerNorm(n_embd)
self.head = nn.Linear(n_embd, vocab_size, bias=False)
if RWKV_HEAD_QK_DIM > 0:
self.head_q = nn.Linear(n_embd, RWKV_HEAD_QK_DIM, bias=False)
self.head_q.scale_init = 0
self.head_k = nn.Linear(n_embd, RWKV_HEAD_QK_DIM, bias=False)
self.head_k.scale_init = 0.1
self.register_buffer("copy_mask", torch.tril(
torch.ones(ctx_len, ctx_len)))
self.ctx_len = ctx_len
self.eval()
self.load_state_dict(torch.load(MODEL_NAME + '.pth'))
self.eval()
def forward(self, idx):
B, T = idx.size()
assert T <= self.ctx_len, "Cannot forward, because len(input) > model ctx_len."
x = self.emb(idx)
x = self.blocks(x)
x = self.ln_out(x)
if RWKV_HEAD_QK_DIM > 0:
q = self.head_q(x)[:, :T, :]
k = self.head_k(x)[:, :T, :]
c = (q @ k.transpose(-2, -1)) * (1.0 / RWKV_HEAD_QK_DIM)
c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0)
if '32' in os.environ['RWKV_FLOAT_MODE']:
c = c @ F.one_hot(idx, num_classes=RWKV_CFG.vocab_size)
elif os.environ['RWKV_FLOAT_MODE'] == 'fp16':
c = c @ F.one_hot(idx, num_classes=RWKV_CFG.vocab_size).half()
elif os.environ['RWKV_FLOAT_MODE'] == 'bf16':
c = c @ F.one_hot(idx, num_classes=RWKV_CFG.vocab_size).bfloat16()
x = self.head(x) + c
else:
x = self.head(x)
return x
class RWKV_RNN():
def __init__(self, MODEL_NAME, RUN_DEVICE, model_type, n_layer, n_embd, ctx_len):
self.RUN_DEVICE = RUN_DEVICE
self.model_type = model_type
self.n_layer = n_layer
self.n_embd = n_embd
self.ctx_len = ctx_len
self.w = types.SimpleNamespace()
#w = torch.load(MODEL_NAME + '.pth',map_location=torch.device(RUN_DEVICE))
w = torch.load(MODEL_NAME + '.pth', map_location=torch.device(RUN_DEVICE), weights_only=True)
for x in w.keys():
w[x] = w[x].float()
if '.time_' in x:
w[x] = w[x].squeeze()
if '.time_decay' in x:
w[x] = -torch.exp(w[x])
if DEBUG_TIME and '.time_' in x:
print(x, w[x].squeeze().cpu().numpy())
xx = x.split('.')
here = self.w
for i in range(len(xx)):
if xx[i].isdigit():
ii = int(xx[i])
if ii not in here:
here[ii] = types.SimpleNamespace()
here = here[ii]
else:
if i == len(xx) - 1:
setattr(here, xx[i], w[x])
elif not hasattr(here, xx[i]):
if xx[i+1].isdigit():
setattr(here, xx[i], {})
else:
setattr(here, xx[i], types.SimpleNamespace())
here = getattr(here, xx[i])
self.clear()
def clear(self):
self.xx = {}
self.aa = {}
self.bb = {}
self.pp = {}
self.hk = None
def save(self, target):
target.xx = copy.deepcopy(self.xx)
target.aa = copy.deepcopy(self.aa)
target.bb = copy.deepcopy(self.bb)
target.pp = copy.deepcopy(self.pp)
target.hk = copy.deepcopy(self.hk)
def load(self, target):
self.xx = copy.deepcopy(target.xx)
self.aa = copy.deepcopy(target.aa)
self.bb = copy.deepcopy(target.bb)
self.pp = copy.deepcopy(target.pp)
self.hk = copy.deepcopy(target.hk)
def LN(self, xx, w):
return F.layer_norm(xx, (self.n_embd,), weight=w.weight, bias=w.bias)
def FF(self, xx, w, name):
if name not in self.xx:
self.xx[name] = torch.zeros(self.n_embd, device=self.RUN_DEVICE)
xk = xx * w.time_mix_k + self.xx[name] * (1 - w.time_mix_k)
xr = xx * w.time_mix_r + self.xx[name] * (1 - w.time_mix_r)
self.xx[name] = xx
r = torch.sigmoid(w.receptance.weight @ xr)
k = torch.square(torch.relu(w.key.weight @ xk))
kv = w.value.weight @ k
return r * kv
def SA(self, xx, w, name):
if name not in self.xx:
self.xx[name] = torch.zeros(self.n_embd, device=self.RUN_DEVICE)
self.aa[name] = torch.zeros(self.n_embd, device=self.RUN_DEVICE)
self.bb[name] = torch.zeros(self.n_embd, device=self.RUN_DEVICE)
self.pp[name] = torch.zeros(self.n_embd, device=self.RUN_DEVICE) - 1e30
xk = xx * w.time_mix_k + self.xx[name] * (1 - w.time_mix_k)
xv = xx * w.time_mix_v + self.xx[name] * (1 - w.time_mix_v)
xr = xx * w.time_mix_r + self.xx[name] * (1 - w.time_mix_r)
self.xx[name] = xx
r = torch.sigmoid(w.receptance.weight @ xr)
k = w.key.weight @ xk
v = w.value.weight @ xv
pp = self.pp[name]
aa = self.aa[name]
bb = self.bb[name]
ww = w.time_first + k
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
a = e1 * aa + e2 * v
b = e1 * bb + e2
ww = pp + w.time_decay
p = torch.maximum(ww, k)
e1 = torch.exp(ww - p)
e2 = torch.exp(k - p)
self.aa[name] = e1 * aa + e2 * v
self.bb[name] = e1 * bb + e2
self.pp[name] = p
rwkv = r * a / b
return w.output.weight @ rwkv
def run(self, ctx):
w = self.w
x = w.emb.weight[ctx[-1]]
for i in range(self.n_layer):
if i == 0:
x = self.LN(x, w.blocks[i].ln0)
if i == 0 and self.model_type == 'RWKV-ffnPre':
x = x + self.FF(self.LN(x, w.blocks[i].ln1), w.blocks[i].ffnPre, f'ffnPre.{i}')
else:
x = x + self.SA(self.LN(x, w.blocks[i].ln1), w.blocks[i].att, f'att.{i}')
x = x + self.FF(self.LN(x, w.blocks[i].ln2), w.blocks[i].ffn, f'ffn.{i}')
x = self.LN(x, w.ln_out)
if RWKV_HEAD_QK_DIM > 0:
if self.hk == None:
self.hk = (w.head_k.weight @ x).unsqueeze(0)
else:
self.hk = torch.cat(
[self.hk, (w.head_k.weight @ x).unsqueeze(0)], dim=0)
if self.hk.shape[0] > self.ctx_len:
self.hk = self.hk[-self.ctx_len:, :]
q = w.head_q.weight @ x
x = w.head.weight @ x
x = x.cpu().numpy().tolist()
c = (self.hk @ q) / RWKV_HEAD_QK_DIM
for i in range(len(c)):
x[ctx[i]] += c[i]
else:
x = w.head.weight @ x
x = x.cpu().numpy().tolist()
return x